Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Solar-driven direct air capture to produce sustainable aviation fuel
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Solar-driven direct air capture to produce sustainable aviation fuel

  • Yide Han1,
  • Olajide Otitoju  ORCID: orcid.org/0000-0001-7658-10491,
  • Ariane D. N. Kamkeng1,
  • Meihong Wang  ORCID: orcid.org/0000-0001-9752-270X1,
  • Hui Yan2,
  • Fisher Millard3,
  • Wenli Du4 &
  • …
  • Feng Qian4 

Nature Communications , Article number:  (2026) Cite this article

  • 2552 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon capture and storage
  • Chemical engineering
  • Energy modelling

Abstract

Renewable energy-powered direct air capture with subsequent utilisation offers a sustainable decarbonisation strategy for a circular economy. Whereas current liquid-based capture technology relies on natural gas combustion for high-temperature calcination, restricting the transition to fully renewable operation. In this study, we show a 1MtCO2/year solar-driven process that adopts a hydrogen fluidised solar calciner with onsite catalytic conversion of CO2 into sustainable aviation fuel. We find that replacing fossil-fuel heating with solar thermal energy lowers electricity consumption by 63% and reduces onsite CO2 emissions by 59%. The analysis shows that the production cost of sustainable aviation fuel is cost-effective (US$4.62/kg) compared to the conventional process. Geographical sensitivity analysis indicates favourable deployment locations are low-risk countries with high solar irradiance and low hydrogen cost. The predicted results also outline potential economic viability for policymakers and industry investors.

Similar content being viewed by others

Air traffic growth jeopardises European aviation’s climate mitigation efforts despite the substantial potential of hydrogen

Article Open access 27 November 2025

Drop-in fuels from sunlight and air

Article 03 November 2021

Cost and emissions pathways towards net-zero climate impacts in aviation

Article 29 September 2022

Data availability

The data supporting the findings of this study are available within the article or Supplementary Information file. Source data are provided with this paper.

References

  1. IPCC Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Lee, H. & Romero, J.) pp. 184 (IPCC, Geneva, Switzerland, 2023) https://doi.org/10.59327/IPCC/AR6-9789291691647.

  2. Breyer, C., Fasihi, M., Bajamundi, C. & Creutzig, F. Direct air capture of CO2: a key technology for ambitious climate change mitigation. Joule 3, 2053–2057 (2019).

    Google Scholar 

  3. IEA. Direct Air Capture https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture (2024).

  4. Erans, M. et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 15, 1360–1405 (2022).

    Google Scholar 

  5. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Google Scholar 

  6. Langie, K. M. G. et al. Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nat. Commun. 13, 7482 (2022).

    Google Scholar 

  7. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it?. Joule 2, 825–832 (2018).

    Google Scholar 

  8. IEA. Putting CO2 to Use https://www.iea.org/reports/putting-co2-to-use (2019).

  9. Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 6, 404–414 (2023).

    Google Scholar 

  10. Cui, Y., Xu, Y. & Zhang, X. Sustainable aviation fuel: biomass fostered future aviation. Innov. Energy 1, 100007 (2024).

    Google Scholar 

  11. Rojas-Michaga, M. F. et al. Sustainable aviation fuel (SAF) production through power-to-liquid (PtL): a combined techno-economic and life cycle assessment. Energy Convers. Manag. 292, 117427 (2023).

    Google Scholar 

  12. Marchese, M., Buffo, G., Santarelli, M. & Lanzini, A. CO2 from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: energy and economic analysis. J. CO2 Util. 46, 101487 (2021).

    Google Scholar 

  13. Vardon, D. R., Sherbacow, B. J., Guan, K., Heyne, J. S. & Abdullah, Z. Realizing “net-zero-carbon” sustainable aviation fuel. Joule 6, 16–21 (2022).

    Google Scholar 

  14. Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).

    Google Scholar 

  15. Carbon Engineering. Air to Fuels™ Technology https://carbonengineering.com/air-to-fuels/ (2024).

  16. Shell Catalyst & Technologies. The Shell XTL Process for Bio-SAF and Synthetic SAF: Watch Now https://catalysts.shell.com/en/shell-xtl-process-webinar-on-demand (2024).

  17. An, K., Farooqui, A. & McCoy, S. T. The impact of climate on solvent-based direct air capture systems. Appl. Energy 325, 119895 (2022).

    Google Scholar 

  18. IEAGHG. Global Assessment of Direct Air Capture Costs https://publications.ieaghg.org/technicalreports/2021-05%20Global%20Assessment%20of%20Direct%20Air%20Capture%20Costs.pdf (2021).

  19. Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).

    Google Scholar 

  20. WRI. 6 Things to Know About Direct Air Capture https://www.wri.org/insights/direct-air-capture-resource-considerations-and-costs-carbon-removal (2025).

  21. McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).

    Google Scholar 

  22. Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Google Scholar 

  23. Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. Direct Air capture (DAC) deployment: a review of the industrial deployment. Chem. Eng. Sci. 283, 119416 (2024).

    Google Scholar 

  24. IEA. CCUS Around the World, IEA, Paris https://www.iea.org/reports/ccus-around-the-world (2021).

  25. Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat. Energy 6, 1035–1044 (2021).

    Google Scholar 

  26. Liu, C. M., Sandhu, N. K., McCoy, S. T. & Bergerson, J. A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel production. Sustain. Energy Fuels 4, 3129–3142 (2020).

    Google Scholar 

  27. Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    Google Scholar 

  28. Yao, B. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11, 6395 (2020).

    Google Scholar 

  29. Zhang, L. et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2, 100170 (2021).

    Google Scholar 

  30. GOV.UK. Pathway to Net Zero Aviation: Developing the UK Sustainable Aviation Fuel Mandate https://www.gov.uk/government/consultations/pathway-to-net-zero-aviation-developing-the-uk-sustainable-aviation-fuel-mandate (2023).

  31. Colelli, L., Segneri, V., Bassano, C. & Vilardi, G. E-fuels, technical and economic analysis of the production of synthetic kerosene precursor as sustainable aviation fuel. Energy Convers. Manag. 288, 117165 (2023).

    Google Scholar 

  32. Panzone, C., Philippe, R., Chappaz, A., Fongarland, P. & Bengaouer, A. Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: focus on the Fischer-Tropsch route. J. CO2 Util. 38, 314–347 (2020).

    Google Scholar 

  33. Hwang, S.-M. et al. Atomically alloyed Fe–Co catalyst derived from a N-coordinated Co single-atom structure for CO2 hydrogenation. ACS Catal. 11, 2267–2278 (2021).

    Google Scholar 

  34. Choi, Y. H. et al. Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels. ChemSusChem 10, 4764–4770 (2017).

    Google Scholar 

  35. Kamkeng, A. D. & Wang, M. Technical analysis of the modified Fischer-Tropsch synthesis process for direct CO2 conversion into gasoline fuel: performance improvement via ex-situ water removal. Chem. Eng. J. 462, 142048 (2023).

    Google Scholar 

  36. Brethomé, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K. & Custelcean, R. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat. Energy 3, 553–559 (2018).

    Google Scholar 

  37. Kar, S. et al. Integrated capture and solar-driven utilization of CO2 from flue gas and air. Joule 7, 1496–1514 (2023).

    Google Scholar 

  38. Zhang, H., Baeyens, J., Degrève, J. & Cacères, G. Concentrated solar power plants: review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013).

    Google Scholar 

  39. Buck, R. & Sment, J. Techno-economic analysis of multi-tower solar particle power plants. Sol. Energy 254, 112–122 (2023).

    Google Scholar 

  40. Zayed, M. E. et al. A comprehensive review on Dish/Stirling concentrated solar power systems: design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 283, 124664 (2021).

    Google Scholar 

  41. Prats-Salvado, E., Jagtap, N., Monnerie, N. & Sattler, C. Solar-powered direct air capture: techno-economic and environmental assessment. Environ. Sci. Technol. 58, 2282–2292 (2024).

    Google Scholar 

  42. Zhao, J. et al. Particle-based high-temperature thermochemical energy storage reactors. Prog. Energy Combust. Sci. 102, 101143 (2024).

    Google Scholar 

  43. Moumin, G. et al. CO2 emission reduction in the cement industry by using a solar calciner. Renew. Energy 145, 1578–1596 (2020).

    Google Scholar 

  44. Esence, T., Benoit, H., Poncin, D., Tessonneaud, M. & Flamant, G. A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes. Sol. Energy 196, 389–398 (2020).

    Google Scholar 

  45. Esence, T., Guillot, E., Tessonneaud, M., Sans, J.-L. & Flamant, G. Solar calcination at pilot scale in a continuous flow multistage horizontal fluidized bed. Sol. Energy 207, 367–378 (2020).

    Google Scholar 

  46. Holmes, G. & Keith, D. W. An air–liquid contactor for large-scale capture of CO2 from air. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 370, 4380–4403 (2012).

    Google Scholar 

  47. Heidel, K., Keith, D., Singh, A. & Holmes, G. Process design and costing of an air-contactor for air-capture. Energy Procedia 4, 2861–2868 (2011).

    Google Scholar 

  48. Holmes, G. et al. Outdoor prototype results for direct atmospheric capture of carbon dioxide. Energy Procedia 37, 6079–6095 (2013).

    Google Scholar 

  49. Wang, R., Zhao, Y., Babich, A., Senk, D. & Fan, X. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 329, 129797 (2021).

    Google Scholar 

  50. Devlin, A., Kossen, J., Goldie-Jones, H. & Yang, A. Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits. Nat. Commun. 14, 2578 (2023).

    Google Scholar 

  51. Kushnir, D., Hansen, T., Vogl, V. & Åhman, M. Adopting hydrogen direct reduction for the Swedish steel industry: a technological innovation system (TIS) study. J. Clean. Prod. 242, 118185 (2020).

    Google Scholar 

  52. MIDREX. Midrex H₂ The Future of Ironmaking https://www.midrex.com/technology/midrex-process/midrex-h2/ (2023).

  53. Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    Google Scholar 

  54. Falter, C., Valente, A., Habersetzer, A., Iribarren, D. & Dufour, J. An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway. Sustain. Energy Fuels 4, 3992–4002 (2020).

    Google Scholar 

  55. Ma, Z., Gifford, J., Wang, X. & Martinek, J. Electric-thermal energy storage using solid particles as storage media. Joule 7, 843–848 (2023).

    Google Scholar 

  56. Yadav, G. et al. Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste. Energy Environ. Sci. 16, 3638–3653 (2023).

    Google Scholar 

  57. Cuevas-Castillo, G. A. et al. Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept. J. Clean. Prod. 469, 143143 (2024).

    Google Scholar 

  58. IATA. IATA Guidance Material for Sustainable Aviation Fuel Management https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/safr-1-2015.pdf (2015).

  59. IATA. IATA Economics https://www.iata.org/en/publications/economics/ (2024).

  60. IEA. Aviation https://www.iea.org/energy-system/transport/aviation (2022).

  61. Department of Energy. U.S. National Clean Hydrogen Strategy and Roadmap https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/us-national-clean-hydrogen-strategy-roadmap.pdf?sfvrsn=c425b44f_5 (2023).

  62. GOV.UK Department for Energy Security & Net Zero. Hydrogen Transport and Storage Cost https://assets.publishing.service.gov.uk/media/659e600b915e0b00135838a6/hydrogen-transport-and-storage-cost-report.pdf (2023).

  63. Bellos, E. Progress in beam-down solar concentrating systems. Prog. Energy Combust. Sci. 97, 101085 (2023).

    Google Scholar 

  64. NREL. Power Tower Projects https://solarpaces.nrel.gov/by-technology/power-tower (2024).

  65. NREL. NSRDB: National Solar Radiation Database https://nsrdb.nrel.gov/data-viewer (2024).

  66. Ameli, N. et al. Higher cost of finance exacerbates a climate investment trap in developing economies. Nat. Commun. 12, 1–12 (2021).

    Google Scholar 

  67. Zang, G., Sun, P., Elgowainy, A. A., Bafana, A. & Wang, M. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. J. CO2 Util. 46, 101459 (2021).

    Google Scholar 

  68. IEA. Section 45Q Credit for Carbon Oxide Sequestration https://www.iea.org/policies/4986-section-45q-credit-for-carbon-oxide-sequestration?technology=CO2%20Storage (2023).

  69. Holmes, H. E., Realff, M. J. & Lively, R. P. Water management and heat integration in direct air capture systems. Nat. Chem. Eng. 1, 208–215 (2024).

    Google Scholar 

  70. Sabatino, F. et al. A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5, 2047–2076 (2021).

    Google Scholar 

  71. Knowlton, T., Karri, S. & Issangya, A. Scale-up of fluidized-bed hydrodynamics. Powder Technol. 150, 72–77 (2005).

    Google Scholar 

  72. Rüdisüli, M., Schildhauer, T. J., Biollaz, S. M. & van Ommen, J. R. Scale-up of bubbling fluidized bed reactors—A review. Powder Technol. 217, 21–38 (2012).

    Google Scholar 

  73. Chew, J. W., LaMarche, W. C. Q. & Cocco, R. A. 100 years of scaling up fluidized bed and circulating fluidized bed reactors. Powder Technol. 409, 117813 (2022).

    Google Scholar 

  74. Kelkar, V. V. & Ng, K. M. Development of fluidized catalytic reactors: screening and scale-up. AIChE J. 48, 1498–1518 (2002).

    Google Scholar 

  75. Fernández-Torres, M. J., Dednam, W. & Caballero, J. A. Economic and environmental assessment of directly converting CO2 into a gasoline fuel. Energy Convers. Manag. 252, 115115 (2022).

    Google Scholar 

  76. Kincaid, N., Mungas, G., Kramer, N., Wagner, M. & Zhu, G. An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver. Appl. Energy 231, 1109–1121 (2018).

    Google Scholar 

  77. Segal, A. & Epstein, M. The optics of the solar tower reflector. Sol. Energy 69, 229–241 (2001).

    Google Scholar 

  78. Tregambi, C., Troiano, M., Montagnaro, F., Solimene, R. & Salatino, P. Fluidized beds for concentrated solar thermal technologies—A review. Front. Energy Res. 9, 618421 (2021).

    Google Scholar 

  79. de Jonge, M. M., Daemen, J., Loriaux, J. M., Steinmann, Z. J. & Huijbregts, M. A. Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents. Int. J. Greenh. Gas. Control 80, 25–31 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by EU RISE project OPTIMAL (Ref: 101007963 to Y.H. and M.W.), National Key Research & Development Program—Intergovernmental International Science and Technology Innovation Cooperation Project (Ref: 2021YFE0112800 to W.D. and F.Q.) and National Natural Science Foundation of China—Basic Science Centre Programme (Ref: 61988101 to W.D. and F.Q.).

Author information

Authors and Affiliations

  1. Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK

    Yide Han, Olajide Otitoju, Ariane D. N. Kamkeng & Meihong Wang

  2. Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK

    Hui Yan

  3. Net Zero Energy, AtkinsRéalis, Edinburgh, UK

    Fisher Millard

  4. Key Laboratory of Advanced Control and Optimization for Chemical Process of the Ministry of Education, East China University of Science and Technology, Shanghai, China

    Wenli Du & Feng Qian

Authors
  1. Yide Han
    View author publications

    Search author on:PubMed Google Scholar

  2. Olajide Otitoju
    View author publications

    Search author on:PubMed Google Scholar

  3. Ariane D. N. Kamkeng
    View author publications

    Search author on:PubMed Google Scholar

  4. Meihong Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Hui Yan
    View author publications

    Search author on:PubMed Google Scholar

  6. Fisher Millard
    View author publications

    Search author on:PubMed Google Scholar

  7. Wenli Du
    View author publications

    Search author on:PubMed Google Scholar

  8. Feng Qian
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation: Y.H., O.O., M.W. and F.Q.; Methodology: Y.H., O.O., A.D.N.K., M.W. and W.D.; Software: Y.H., O.O., A.D.N.K., H.Y. and M.W.; Writing–original draft: Y.H.; Writing–review & editing: Y.H., O.O., A.D.N.K., H.Y., F.M., M.W., W.D. and F.Q.; Supervision: M.W., W.D. and F.Q.

Corresponding authors

Correspondence to Meihong Wang, Wenli Du or Feng Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yi Ouyang, Chuan Xia and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Otitoju, O., Kamkeng, A.D.N. et al. Solar-driven direct air capture to produce sustainable aviation fuel. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67977-x

Download citation

  • Received: 02 April 2025

  • Accepted: 15 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67977-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing