Abstract
Renewable energy-powered direct air capture with subsequent utilisation offers a sustainable decarbonisation strategy for a circular economy. Whereas current liquid-based capture technology relies on natural gas combustion for high-temperature calcination, restricting the transition to fully renewable operation. In this study, we show a 1MtCO2/year solar-driven process that adopts a hydrogen fluidised solar calciner with onsite catalytic conversion of CO2 into sustainable aviation fuel. We find that replacing fossil-fuel heating with solar thermal energy lowers electricity consumption by 63% and reduces onsite CO2 emissions by 59%. The analysis shows that the production cost of sustainable aviation fuel is cost-effective (US$4.62/kg) compared to the conventional process. Geographical sensitivity analysis indicates favourable deployment locations are low-risk countries with high solar irradiance and low hydrogen cost. The predicted results also outline potential economic viability for policymakers and industry investors.
Similar content being viewed by others
Data availability
The data supporting the findings of this study are available within the article or Supplementary Information file. Source data are provided with this paper.
References
IPCC Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Lee, H. & Romero, J.) pp. 184 (IPCC, Geneva, Switzerland, 2023) https://doi.org/10.59327/IPCC/AR6-9789291691647.
Breyer, C., Fasihi, M., Bajamundi, C. & Creutzig, F. Direct air capture of CO2: a key technology for ambitious climate change mitigation. Joule 3, 2053–2057 (2019).
IEA. Direct Air Capture https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture (2024).
Erans, M. et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 15, 1360–1405 (2022).
Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).
Langie, K. M. G. et al. Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nat. Commun. 13, 7482 (2022).
Bushuyev, O. S. et al. What should we make with CO2 and how can we make it?. Joule 2, 825–832 (2018).
IEA. Putting CO2 to Use https://www.iea.org/reports/putting-co2-to-use (2019).
Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 6, 404–414 (2023).
Cui, Y., Xu, Y. & Zhang, X. Sustainable aviation fuel: biomass fostered future aviation. Innov. Energy 1, 100007 (2024).
Rojas-Michaga, M. F. et al. Sustainable aviation fuel (SAF) production through power-to-liquid (PtL): a combined techno-economic and life cycle assessment. Energy Convers. Manag. 292, 117427 (2023).
Marchese, M., Buffo, G., Santarelli, M. & Lanzini, A. CO2 from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: energy and economic analysis. J. CO2 Util. 46, 101487 (2021).
Vardon, D. R., Sherbacow, B. J., Guan, K., Heyne, J. S. & Abdullah, Z. Realizing “net-zero-carbon” sustainable aviation fuel. Joule 6, 16–21 (2022).
Sacchi, R. et al. How to make climate-neutral aviation fly. Nat. Commun. 14, 3989 (2023).
Carbon Engineering. Air to Fuels™ Technology https://carbonengineering.com/air-to-fuels/ (2024).
Shell Catalyst & Technologies. The Shell XTL Process for Bio-SAF and Synthetic SAF: Watch Now https://catalysts.shell.com/en/shell-xtl-process-webinar-on-demand (2024).
An, K., Farooqui, A. & McCoy, S. T. The impact of climate on solvent-based direct air capture systems. Appl. Energy 325, 119895 (2022).
IEAGHG. Global Assessment of Direct Air Capture Costs https://publications.ieaghg.org/technicalreports/2021-05%20Global%20Assessment%20of%20Direct%20Air%20Capture%20Costs.pdf (2021).
Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).
WRI. 6 Things to Know About Direct Air Capture https://www.wri.org/insights/direct-air-capture-resource-considerations-and-costs-carbon-removal (2025).
McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).
Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).
Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. Direct Air capture (DAC) deployment: a review of the industrial deployment. Chem. Eng. Sci. 283, 119416 (2024).
IEA. CCUS Around the World, IEA, Paris https://www.iea.org/reports/ccus-around-the-world (2021).
Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat. Energy 6, 1035–1044 (2021).
Liu, C. M., Sandhu, N. K., McCoy, S. T. & Bergerson, J. A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel production. Sustain. Energy Fuels 4, 3129–3142 (2020).
Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).
Yao, B. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 11, 6395 (2020).
Zhang, L. et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation 2, 100170 (2021).
GOV.UK. Pathway to Net Zero Aviation: Developing the UK Sustainable Aviation Fuel Mandate https://www.gov.uk/government/consultations/pathway-to-net-zero-aviation-developing-the-uk-sustainable-aviation-fuel-mandate (2023).
Colelli, L., Segneri, V., Bassano, C. & Vilardi, G. E-fuels, technical and economic analysis of the production of synthetic kerosene precursor as sustainable aviation fuel. Energy Convers. Manag. 288, 117165 (2023).
Panzone, C., Philippe, R., Chappaz, A., Fongarland, P. & Bengaouer, A. Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: focus on the Fischer-Tropsch route. J. CO2 Util. 38, 314–347 (2020).
Hwang, S.-M. et al. Atomically alloyed Fe–Co catalyst derived from a N-coordinated Co single-atom structure for CO2 hydrogenation. ACS Catal. 11, 2267–2278 (2021).
Choi, Y. H. et al. Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels. ChemSusChem 10, 4764–4770 (2017).
Kamkeng, A. D. & Wang, M. Technical analysis of the modified Fischer-Tropsch synthesis process for direct CO2 conversion into gasoline fuel: performance improvement via ex-situ water removal. Chem. Eng. J. 462, 142048 (2023).
Brethomé, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K. & Custelcean, R. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat. Energy 3, 553–559 (2018).
Kar, S. et al. Integrated capture and solar-driven utilization of CO2 from flue gas and air. Joule 7, 1496–1514 (2023).
Zhang, H., Baeyens, J., Degrève, J. & Cacères, G. Concentrated solar power plants: review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013).
Buck, R. & Sment, J. Techno-economic analysis of multi-tower solar particle power plants. Sol. Energy 254, 112–122 (2023).
Zayed, M. E. et al. A comprehensive review on Dish/Stirling concentrated solar power systems: design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 283, 124664 (2021).
Prats-Salvado, E., Jagtap, N., Monnerie, N. & Sattler, C. Solar-powered direct air capture: techno-economic and environmental assessment. Environ. Sci. Technol. 58, 2282–2292 (2024).
Zhao, J. et al. Particle-based high-temperature thermochemical energy storage reactors. Prog. Energy Combust. Sci. 102, 101143 (2024).
Moumin, G. et al. CO2 emission reduction in the cement industry by using a solar calciner. Renew. Energy 145, 1578–1596 (2020).
Esence, T., Benoit, H., Poncin, D., Tessonneaud, M. & Flamant, G. A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes. Sol. Energy 196, 389–398 (2020).
Esence, T., Guillot, E., Tessonneaud, M., Sans, J.-L. & Flamant, G. Solar calcination at pilot scale in a continuous flow multistage horizontal fluidized bed. Sol. Energy 207, 367–378 (2020).
Holmes, G. & Keith, D. W. An air–liquid contactor for large-scale capture of CO2 from air. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 370, 4380–4403 (2012).
Heidel, K., Keith, D., Singh, A. & Holmes, G. Process design and costing of an air-contactor for air-capture. Energy Procedia 4, 2861–2868 (2011).
Holmes, G. et al. Outdoor prototype results for direct atmospheric capture of carbon dioxide. Energy Procedia 37, 6079–6095 (2013).
Wang, R., Zhao, Y., Babich, A., Senk, D. & Fan, X. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 329, 129797 (2021).
Devlin, A., Kossen, J., Goldie-Jones, H. & Yang, A. Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits. Nat. Commun. 14, 2578 (2023).
Kushnir, D., Hansen, T., Vogl, V. & Åhman, M. Adopting hydrogen direct reduction for the Swedish steel industry: a technological innovation system (TIS) study. J. Clean. Prod. 242, 118185 (2020).
MIDREX. Midrex H₂ The Future of Ironmaking https://www.midrex.com/technology/midrex-process/midrex-h2/ (2023).
Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).
Falter, C., Valente, A., Habersetzer, A., Iribarren, D. & Dufour, J. An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway. Sustain. Energy Fuels 4, 3992–4002 (2020).
Ma, Z., Gifford, J., Wang, X. & Martinek, J. Electric-thermal energy storage using solid particles as storage media. Joule 7, 843–848 (2023).
Yadav, G. et al. Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste. Energy Environ. Sci. 16, 3638–3653 (2023).
Cuevas-Castillo, G. A. et al. Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept. J. Clean. Prod. 469, 143143 (2024).
IATA. IATA Guidance Material for Sustainable Aviation Fuel Management https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/safr-1-2015.pdf (2015).
IATA. IATA Economics https://www.iata.org/en/publications/economics/ (2024).
IEA. Aviation https://www.iea.org/energy-system/transport/aviation (2022).
Department of Energy. U.S. National Clean Hydrogen Strategy and Roadmap https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/us-national-clean-hydrogen-strategy-roadmap.pdf?sfvrsn=c425b44f_5 (2023).
GOV.UK Department for Energy Security & Net Zero. Hydrogen Transport and Storage Cost https://assets.publishing.service.gov.uk/media/659e600b915e0b00135838a6/hydrogen-transport-and-storage-cost-report.pdf (2023).
Bellos, E. Progress in beam-down solar concentrating systems. Prog. Energy Combust. Sci. 97, 101085 (2023).
NREL. Power Tower Projects https://solarpaces.nrel.gov/by-technology/power-tower (2024).
NREL. NSRDB: National Solar Radiation Database https://nsrdb.nrel.gov/data-viewer (2024).
Ameli, N. et al. Higher cost of finance exacerbates a climate investment trap in developing economies. Nat. Commun. 12, 1–12 (2021).
Zang, G., Sun, P., Elgowainy, A. A., Bafana, A. & Wang, M. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. J. CO2 Util. 46, 101459 (2021).
IEA. Section 45Q Credit for Carbon Oxide Sequestration https://www.iea.org/policies/4986-section-45q-credit-for-carbon-oxide-sequestration?technology=CO2%20Storage (2023).
Holmes, H. E., Realff, M. J. & Lively, R. P. Water management and heat integration in direct air capture systems. Nat. Chem. Eng. 1, 208–215 (2024).
Sabatino, F. et al. A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5, 2047–2076 (2021).
Knowlton, T., Karri, S. & Issangya, A. Scale-up of fluidized-bed hydrodynamics. Powder Technol. 150, 72–77 (2005).
Rüdisüli, M., Schildhauer, T. J., Biollaz, S. M. & van Ommen, J. R. Scale-up of bubbling fluidized bed reactors—A review. Powder Technol. 217, 21–38 (2012).
Chew, J. W., LaMarche, W. C. Q. & Cocco, R. A. 100 years of scaling up fluidized bed and circulating fluidized bed reactors. Powder Technol. 409, 117813 (2022).
Kelkar, V. V. & Ng, K. M. Development of fluidized catalytic reactors: screening and scale-up. AIChE J. 48, 1498–1518 (2002).
Fernández-Torres, M. J., Dednam, W. & Caballero, J. A. Economic and environmental assessment of directly converting CO2 into a gasoline fuel. Energy Convers. Manag. 252, 115115 (2022).
Kincaid, N., Mungas, G., Kramer, N., Wagner, M. & Zhu, G. An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver. Appl. Energy 231, 1109–1121 (2018).
Segal, A. & Epstein, M. The optics of the solar tower reflector. Sol. Energy 69, 229–241 (2001).
Tregambi, C., Troiano, M., Montagnaro, F., Solimene, R. & Salatino, P. Fluidized beds for concentrated solar thermal technologies—A review. Front. Energy Res. 9, 618421 (2021).
de Jonge, M. M., Daemen, J., Loriaux, J. M., Steinmann, Z. J. & Huijbregts, M. A. Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents. Int. J. Greenh. Gas. Control 80, 25–31 (2019).
Acknowledgements
This work was supported by EU RISE project OPTIMAL (Ref: 101007963 to Y.H. and M.W.), National Key Research & Development Program—Intergovernmental International Science and Technology Innovation Cooperation Project (Ref: 2021YFE0112800 to W.D. and F.Q.) and National Natural Science Foundation of China—Basic Science Centre Programme (Ref: 61988101 to W.D. and F.Q.).
Author information
Authors and Affiliations
Contributions
Conceptualisation: Y.H., O.O., M.W. and F.Q.; Methodology: Y.H., O.O., A.D.N.K., M.W. and W.D.; Software: Y.H., O.O., A.D.N.K., H.Y. and M.W.; Writing–original draft: Y.H.; Writing–review & editing: Y.H., O.O., A.D.N.K., H.Y., F.M., M.W., W.D. and F.Q.; Supervision: M.W., W.D. and F.Q.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Yi Ouyang, Chuan Xia and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Han, Y., Otitoju, O., Kamkeng, A.D.N. et al. Solar-driven direct air capture to produce sustainable aviation fuel. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67977-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-67977-x


