Abstract
Topological soft matter systems rely on controllable defect structures to encode functionality, yet robust, large-scale, and reconfigurable manipulation strategies remain elusive. Here we present a versatile acoustic platform for dynamic control of liquid crystal defect arrays via engineered topological wavefields. By coherently superimposing surface acoustic waves, we generate spatially structured potential landscapes and acoustic streaming vortices that interact with the molecular orientation field of liquid crystals, enabling dynamic reconfiguration of topological defects. Tuning the acoustic parameter space allows precise modulation of defect density, symmetry, morphology, and spatial positioning. A theoretical framework based on Ginzburg-Landau modeling and free energy minimization captures the formation of vortex-induced instabilities and associated topological textures. The platform operates across diverse liquid crystal compositions, demonstrating material generality. This acoustically driven approach offers a scalable strategy for programmable topological structure in soft matter, with potential applications in reconfigurable photonic devices and active material systems.
Similar content being viewed by others
Data availability
The relevant raw data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.
Code availability
Additional information is available from the corresponding authors upon request.
References
Gupta, S. & Saxena, A. The role of topology in materials. (Springer, 2018).
McConney, M. E. et al. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv. Mat. 25, 5880–5885 (2013).
Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).
Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 3, 823–828 (2004).
Yang, J., Zou, Y., Li, J., Huang, M. & Aya, S. Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics. Nat. Phys. 20, 991–1000 (2024).
Peng, C., Turiv, T., Guo, Y., Wei, Q.-H. & Lavrentovich, O. D. Command of active matter by topological defects and patterns. Science 354, 882–885 (2016).
Tubiana, L. et al. Topology in soft and biological matter. Phys. Rep. 1075, 1–137 (2024).
Li, Q. Nanoscience with Liquid Crystals. (Springer, 2014).
Lavrentovich, O. D. Defects in liquid crystals: Computer Simulations, Theory and Experiments. Vol. 43 (Springer Science & Business Media, 2001).
Alexander, G. P., Chen, B. G. -g, Matsumoto, E. A. & Kamien, R. D. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84, 497–514 (2012).
Zhang, R., Mozaffari, A. & de Pablo, J. J. Autonomous materials systems from active liquid crystals. Nat. Rev. Mater. 6, 437–453 (2021).
Ma, L.-L. et al. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 11, 270 (2022).
Muševič, I. Integrated and topological liquid crystal photonics. Liq. Cryst. 41, 418–429 (2014).
Meng, C., Wu, J.-S. & Smalyukh, I. I. Topological steering of light by nematic vortices and analogy to cosmic strings. Nat. Mater. 22, 64–72 (2023).
Musevic, I., Skarabot, M., Tkalec, U., Ravnik, M. & Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).
Yoshida, H., Asakura, K., Fukuda, J.-I. & Ozaki, M. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nat. Commun. 6, 7180 (2015).
Smalyukh, I. I. Liquid crystal colloids. Annu. Rev. Condens. Matter Phys. 9, 207–226 (2018).
Lin, I.-H. et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science 332, 1297–1300 (2011).
Esteves, C., Ramou, E., Porteira, A. R. P., Moura Barbosa, A. J. & Roque, A. C. A. Seeing the unseen: the role of liquid crystals in gas-sensing technologies. Adv. Opt. Mater. 8, 1902117 (2020).
Yuan, Y., Liu, Q., Senyuk, B. & Smalyukh, I. I. Elastic colloidal monopoles and reconfigurable self-assembly in liquid crystals. Nature 570, 214–218 (2019).
Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. & Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).
Honglawan, A. et al. Pillar-Assisted Epitaxial Assembly of Toric Focal Conic Domains of Smectic-A Liquid Crystals. Adv. Mat. 23, 5519–5523 (2011).
Kim, D. S., Čopar, S., Tkalec, U. & Yoon, D. K. Mosaics of topological defects in micropatterned liquid crystal textures. Sci. Adv. 4, eaau8064 (2018).
Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).
Tran, L. et al. Lassoing saddle splay and the geometrical control of topological defects. Proc. Natl. Acad. Sci. USA 113, 7106–7111 (2016).
Ohzono, T. & Fukuda, J. -i Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat. Commun. 3, 701 (2012).
Ma, L. L. et al. Smectic layer origami via preprogrammed photoalignment. Adv. Mat. 29, 1606671 (2017).
Sasaki, Y. et al. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 7, 13238 (2016).
Sandford O'Neill, J. J. et al. Electrically-tunable positioning of topological defects in liquid crystals. Nat. Commun. 11, 2203 (2020).
Calisto, E., Clerc, M. G. & Zambra, V. Magnetic field-induced vortex triplet and vortex lattice in a liquid crystal cell. Phy. Rev. Res. 2, 042026 (2020).
Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2010).
Barboza, R. et al. Vortex induction via anisotropy stabilized light-matter interaction. Phys. Rev. Lett. 109, 143901 (2012).
Nikkhou, M. et al. Light-controlled topological charge in a nematic liquid crystal. Nat. Phys. 11, 183–187 (2015).
Zheng, Z. G. et al. Controllable dynamic zigzag pattern formation in a soft helical superstructure. Adv. Mat. 29, 1701903 (2017).
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022).
Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mater. 7, 974–990 (2022).
Muelas-Hurtado, R. D. et al. Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett. 129, 204301 (2022).
Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).
Liu, Y. J. et al. Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals. Adv. Mat. 23, 1656–1659 (2011).
Helfrich, W. Orienting action of sound on nematic liquid crystals. Phys. Rev. Lett. 29, 1583 (1972).
Miyano, K. & Shen, Y. Excitation of stripe domain patterns by propagating acoustic waves in an oriented nematic film. Phys. Rev. A 15, 2471 (1977).
Vásquez-Montoya, G. A. et al. Control of liquid crystals combining surface acoustic waves, nematic flows, and microfluidic confinement. Soft Matter 20, 397–406 (2024).
Ozaki, R., Shinpo, T., Ozaki, M. & Moritake, H. Reorientation of cholesteric liquid crystal molecules using acoustic streaming. Jpn. J. Appl. Phys. 46, L489 (2007).
Taniguchi, S. et al. Control of liquid crystal molecular orientation using ultrasound vibration. Appl. Phys. Lett. 108, 101103 (2016).
Zhao, S. et al. Topological acoustofluidics. Nat. Mater. 24, 707–715 (2025).
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).
Wang, B. et al. Topological water-wave structures manipulating particles. Nature 638, 394–400 (2025).
Rudinger, A. & Stark, H. Twist transition in nematic droplets: a stability analysis. Liq. Cryst. 26, 753–758 (1999).
Ohzono, T. et al. Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7, 16814 (2017).
Selinger, J. et al. Acoustic realignment of nematic liquid crystals. Phys. Rev. E 66, 051708 (2002).
Mur, M., Kos, Ž, Ravnik, M. & Muševič, I. Continuous generation of topological defects in a passively driven nematic liquid crystal. Nat. Commun. 13, 6855 (2022).
Zhao, H. & Smalyukh, I. I. Space-time crystals from particle-like topological solitons. Nat. Mater. 24, 1802–1811 (2025).
Zhao, H., Zhang, R. & Smalyukh, I. I. Emergent discrete space-time crystal of Majorana-like quasiparticles in chiral liquid crystals. arXiv preprint arXiv:2507.16977, (2025).
Zhao, H., Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19, 451–459 (2023).
Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Geometric transformation and three-dimensional hopping of Hopf solitons. Nat. Commun. 13, 2986 (2022).
Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photonics 16, 454–461 (2022).
Wu, K.-H. et al. Light-regulated soliton dynamics in liquid crystals. Nat. Commun. 15, 7217 (2024).
Sohn, H. R., Liu, C. D. & Smalyukh, I. I. Schools of skyrmions with electrically tunable elastic interactions. Nat. Commun. 10, 4744 (2019).
Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2021).
Xu, Y., Jin, M., Wang, J., Huang, S. & Li, Q. Modulating the macroscopic anisotropy of liquid crystalline polymers by polarized light. Responsive Mater. 2, e20240020 (2024).
Shen, L. et al. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat. Commun. 15, 9059 (2024).
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).
Zhang, Y., Zheng, Z. G. & Li, Q. Multiple degrees-of-freedom programmable soft-matter-photonics: configuration, manipulation, and advanced applications. Responsive Mater. 2, e20230029 (2024).
Wang, R., Lei, Z., Jiang, J. & Peng, C. Liquid crystal based programmable active materials. Responsive Mater. 3, e20250001 (2025).
Zheng, R. et al. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 1, e20230017 (2023).
Posnjak, G., Copar, S. & Musevic, I. Hidden topological constellations and polyvalent charges in chiral nematic droplets. Nat. Commun. 8, 14594 (2017).
Acknowledgements
We thank Prof. Huanyang Chen for fruitful discussions. This work was financially supported by the National Key Research and Development Program of China (No. 2022YFA1203700 to L. -J C.), the National Natural Science Foundation of China (No. 624B2121 to K. -H W., No. 62175206 to S. -S L., No. 62475223 to L. -J C., No. 62204212 to X. H.).
Author information
Authors and Affiliations
Contributions
Conceived the idea: K.-H.W., X.H., and L.-J.C. Performed the experimental studies: K.-H.W. and X.H. Performed theoretical simulations of the acoustic topological structures: K.-H.W. and X.H. Solved the Ginzburg-Landau model: Z.S. Analyzed the data and drew the figures: K.-H.W., L.-T.Z., X.H., and L.-J.C. All authors contributed to the discussions of the results and manuscript preparation. Supervised the Ginzburg-Landau model: Q.H.L. Supervised the research: L.-J.C., X.H., and S.-S.L.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflicts of interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Wu, KH., Sun, Z., Zhu, LT. et al. Harnessing acoustic topology for dynamic control of liquid crystal defects. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68001-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-68001-y


