Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Harnessing acoustic topology for dynamic control of liquid crystal defects
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Harnessing acoustic topology for dynamic control of liquid crystal defects

  • Ke-Hui Wu1,
  • Zefei Sun2,
  • Li-Ting Zhu1,
  • Sen-Sen Li  ORCID: orcid.org/0000-0003-3938-55371,3,
  • Xuejia Hu  ORCID: orcid.org/0000-0001-8891-21401,3,
  • Qing Huo Liu2,4 &
  • …
  • Lu-Jian Chen  ORCID: orcid.org/0000-0002-4156-019X1,3 

Nature Communications , Article number:  (2026) Cite this article

  • 3947 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Liquid crystals
  • Topological defects

Abstract

Topological soft matter systems rely on controllable defect structures to encode functionality, yet robust, large-scale, and reconfigurable manipulation strategies remain elusive. Here we present a versatile acoustic platform for dynamic control of liquid crystal defect arrays via engineered topological wavefields. By coherently superimposing surface acoustic waves, we generate spatially structured potential landscapes and acoustic streaming vortices that interact with the molecular orientation field of liquid crystals, enabling dynamic reconfiguration of topological defects. Tuning the acoustic parameter space allows precise modulation of defect density, symmetry, morphology, and spatial positioning. A theoretical framework based on Ginzburg-Landau modeling and free energy minimization captures the formation of vortex-induced instabilities and associated topological textures. The platform operates across diverse liquid crystal compositions, demonstrating material generality. This acoustically driven approach offers a scalable strategy for programmable topological structure in soft matter, with potential applications in reconfigurable photonic devices and active material systems.

Similar content being viewed by others

Liquid-induced topological transformations of cellular microstructures

Article 14 April 2021

Reconfigurable dynamic acoustic holography with acoustically transparent and programmable metamaterial

Article Open access 14 October 2025

Self-assembled liquid crystal architectures for soft matter photonics

Article Open access 13 September 2022

Data availability

The relevant raw data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

Code availability

Additional information is available from the corresponding authors upon request.

References

  1. Gupta, S. & Saxena, A. The role of topology in materials. (Springer, 2018).

  2. McConney, M. E. et al. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv. Mat. 25, 5880–5885 (2013).

    Google Scholar 

  3. Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).

    Google Scholar 

  4. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 3, 823–828 (2004).

    Google Scholar 

  5. Yang, J., Zou, Y., Li, J., Huang, M. & Aya, S. Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics. Nat. Phys. 20, 991–1000 (2024).

    Google Scholar 

  6. Peng, C., Turiv, T., Guo, Y., Wei, Q.-H. & Lavrentovich, O. D. Command of active matter by topological defects and patterns. Science 354, 882–885 (2016).

    Google Scholar 

  7. Tubiana, L. et al. Topology in soft and biological matter. Phys. Rep. 1075, 1–137 (2024).

    Google Scholar 

  8. Li, Q. Nanoscience with Liquid Crystals. (Springer, 2014).

  9. Lavrentovich, O. D. Defects in liquid crystals: Computer Simulations, Theory and Experiments. Vol. 43 (Springer Science & Business Media, 2001).

  10. Alexander, G. P., Chen, B. G. -g, Matsumoto, E. A. & Kamien, R. D. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84, 497–514 (2012).

    Google Scholar 

  11. Zhang, R., Mozaffari, A. & de Pablo, J. J. Autonomous materials systems from active liquid crystals. Nat. Rev. Mater. 6, 437–453 (2021).

    Google Scholar 

  12. Ma, L.-L. et al. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 11, 270 (2022).

    Google Scholar 

  13. Muševič, I. Integrated and topological liquid crystal photonics. Liq. Cryst. 41, 418–429 (2014).

    Google Scholar 

  14. Meng, C., Wu, J.-S. & Smalyukh, I. I. Topological steering of light by nematic vortices and analogy to cosmic strings. Nat. Mater. 22, 64–72 (2023).

    Google Scholar 

  15. Musevic, I., Skarabot, M., Tkalec, U., Ravnik, M. & Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).

    Google Scholar 

  16. Yoshida, H., Asakura, K., Fukuda, J.-I. & Ozaki, M. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nat. Commun. 6, 7180 (2015).

    Google Scholar 

  17. Smalyukh, I. I. Liquid crystal colloids. Annu. Rev. Condens. Matter Phys. 9, 207–226 (2018).

    Google Scholar 

  18. Lin, I.-H. et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science 332, 1297–1300 (2011).

    Google Scholar 

  19. Esteves, C., Ramou, E., Porteira, A. R. P., Moura Barbosa, A. J. & Roque, A. C. A. Seeing the unseen: the role of liquid crystals in gas-sensing technologies. Adv. Opt. Mater. 8, 1902117 (2020).

    Google Scholar 

  20. Yuan, Y., Liu, Q., Senyuk, B. & Smalyukh, I. I. Elastic colloidal monopoles and reconfigurable self-assembly in liquid crystals. Nature 570, 214–218 (2019).

    Google Scholar 

  21. Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. & Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

    Google Scholar 

  22. Honglawan, A. et al. Pillar-Assisted Epitaxial Assembly of Toric Focal Conic Domains of Smectic-A Liquid Crystals. Adv. Mat. 23, 5519–5523 (2011).

    Google Scholar 

  23. Kim, D. S., Čopar, S., Tkalec, U. & Yoon, D. K. Mosaics of topological defects in micropatterned liquid crystal textures. Sci. Adv. 4, eaau8064 (2018).

    Google Scholar 

  24. Kim, J.-H., Yoneya, M. & Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 420, 159–162 (2002).

    Google Scholar 

  25. Tran, L. et al. Lassoing saddle splay and the geometrical control of topological defects. Proc. Natl. Acad. Sci. USA 113, 7106–7111 (2016).

    Google Scholar 

  26. Ohzono, T. & Fukuda, J. -i Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat. Commun. 3, 701 (2012).

    Google Scholar 

  27. Ma, L. L. et al. Smectic layer origami via preprogrammed photoalignment. Adv. Mat. 29, 1606671 (2017).

    Google Scholar 

  28. Sasaki, Y. et al. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 7, 13238 (2016).

    Google Scholar 

  29. Sandford O'Neill, J. J. et al. Electrically-tunable positioning of topological defects in liquid crystals. Nat. Commun. 11, 2203 (2020).

    Google Scholar 

  30. Calisto, E., Clerc, M. G. & Zambra, V. Magnetic field-induced vortex triplet and vortex lattice in a liquid crystal cell. Phy. Rev. Res. 2, 042026 (2020).

    Google Scholar 

  31. Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2010).

    Google Scholar 

  32. Barboza, R. et al. Vortex induction via anisotropy stabilized light-matter interaction. Phys. Rev. Lett. 109, 143901 (2012).

    Google Scholar 

  33. Nikkhou, M. et al. Light-controlled topological charge in a nematic liquid crystal. Nat. Phys. 11, 183–187 (2015).

    Google Scholar 

  34. Zheng, Z. G. et al. Controllable dynamic zigzag pattern formation in a soft helical superstructure. Adv. Mat. 29, 1701903 (2017).

    Google Scholar 

  35. Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2, 30 (2022).

    Google Scholar 

  36. Xue, H., Yang, Y. & Zhang, B. Topological acoustics. Nat. Rev. Mater. 7, 974–990 (2022).

    Google Scholar 

  37. Muelas-Hurtado, R. D. et al. Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett. 129, 204301 (2022).

    Google Scholar 

  38. Ge, H. et al. Observation of acoustic skyrmions. Phys. Rev. Lett. 127, 144502 (2021).

    Google Scholar 

  39. Liu, Y. J. et al. Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals. Adv. Mat. 23, 1656–1659 (2011).

    Google Scholar 

  40. Helfrich, W. Orienting action of sound on nematic liquid crystals. Phys. Rev. Lett. 29, 1583 (1972).

    Google Scholar 

  41. Miyano, K. & Shen, Y. Excitation of stripe domain patterns by propagating acoustic waves in an oriented nematic film. Phys. Rev. A 15, 2471 (1977).

    Google Scholar 

  42. Vásquez-Montoya, G. A. et al. Control of liquid crystals combining surface acoustic waves, nematic flows, and microfluidic confinement. Soft Matter 20, 397–406 (2024).

    Google Scholar 

  43. Ozaki, R., Shinpo, T., Ozaki, M. & Moritake, H. Reorientation of cholesteric liquid crystal molecules using acoustic streaming. Jpn. J. Appl. Phys. 46, L489 (2007).

    Google Scholar 

  44. Taniguchi, S. et al. Control of liquid crystal molecular orientation using ultrasound vibration. Appl. Phys. Lett. 108, 101103 (2016).

  45. Zhao, S. et al. Topological acoustofluidics. Nat. Mater. 24, 707–715 (2025).

    Google Scholar 

  46. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Google Scholar 

  47. Wang, B. et al. Topological water-wave structures manipulating particles. Nature 638, 394–400 (2025).

    Google Scholar 

  48. Rudinger, A. & Stark, H. Twist transition in nematic droplets: a stability analysis. Liq. Cryst. 26, 753–758 (1999).

    Google Scholar 

  49. Ohzono, T. et al. Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7, 16814 (2017).

    Google Scholar 

  50. Selinger, J. et al. Acoustic realignment of nematic liquid crystals. Phys. Rev. E 66, 051708 (2002).

    Google Scholar 

  51. Mur, M., Kos, Ž, Ravnik, M. & Muševič, I. Continuous generation of topological defects in a passively driven nematic liquid crystal. Nat. Commun. 13, 6855 (2022).

    Google Scholar 

  52. Zhao, H. & Smalyukh, I. I. Space-time crystals from particle-like topological solitons. Nat. Mater. 24, 1802–1811 (2025).

  53. Zhao, H., Zhang, R. & Smalyukh, I. I. Emergent discrete space-time crystal of Majorana-like quasiparticles in chiral liquid crystals. arXiv preprint arXiv:2507.16977, (2025).

  54. Zhao, H., Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19, 451–459 (2023).

    Google Scholar 

  55. Tai, J.-S. B., Wu, J.-S. & Smalyukh, I. I. Geometric transformation and three-dimensional hopping of Hopf solitons. Nat. Commun. 13, 2986 (2022).

    Google Scholar 

  56. Poy, G. et al. Interaction and co-assembly of optical and topological solitons. Nat. Photonics 16, 454–461 (2022).

    Google Scholar 

  57. Wu, K.-H. et al. Light-regulated soliton dynamics in liquid crystals. Nat. Commun. 15, 7217 (2024).

    Google Scholar 

  58. Sohn, H. R., Liu, C. D. & Smalyukh, I. I. Schools of skyrmions with electrically tunable elastic interactions. Nat. Commun. 10, 4744 (2019).

    Google Scholar 

  59. Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2021).

    Google Scholar 

  60. Xu, Y., Jin, M., Wang, J., Huang, S. & Li, Q. Modulating the macroscopic anisotropy of liquid crystalline polymers by polarized light. Responsive Mater. 2, e20240020 (2024).

    Google Scholar 

  61. Shen, L. et al. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat. Commun. 15, 9059 (2024).

    Google Scholar 

  62. Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).

    Google Scholar 

  63. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    Google Scholar 

  64. Zhang, Y., Zheng, Z. G. & Li, Q. Multiple degrees-of-freedom programmable soft-matter-photonics: configuration, manipulation, and advanced applications. Responsive Mater. 2, e20230029 (2024).

    Google Scholar 

  65. Wang, R., Lei, Z., Jiang, J. & Peng, C. Liquid crystal based programmable active materials. Responsive Mater. 3, e20250001 (2025).

    Google Scholar 

  66. Zheng, R. et al. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 1, e20230017 (2023).

    Google Scholar 

  67. Posnjak, G., Copar, S. & Musevic, I. Hidden topological constellations and polyvalent charges in chiral nematic droplets. Nat. Commun. 8, 14594 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Huanyang Chen for fruitful discussions. This work was financially supported by the National Key Research and Development Program of China (No. 2022YFA1203700 to L. -J C.), the National Natural Science Foundation of China (No. 624B2121 to K. -H W., No. 62175206 to S. -S L., No. 62475223 to L. -J C., No. 62204212 to X. H.).

Author information

Authors and Affiliations

  1. Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China

    Ke-Hui Wu, Li-Ting Zhu, Sen-Sen Li, Xuejia Hu & Lu-Jian Chen

  2. Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, China

    Zefei Sun & Qing Huo Liu

  3. Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen, China

    Sen-Sen Li, Xuejia Hu & Lu-Jian Chen

  4. School of Electronic Science and Technology, the Eastern Institute of Technology, Ningbo, China

    Qing Huo Liu

Authors
  1. Ke-Hui Wu
    View author publications

    Search author on:PubMed Google Scholar

  2. Zefei Sun
    View author publications

    Search author on:PubMed Google Scholar

  3. Li-Ting Zhu
    View author publications

    Search author on:PubMed Google Scholar

  4. Sen-Sen Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Xuejia Hu
    View author publications

    Search author on:PubMed Google Scholar

  6. Qing Huo Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Lu-Jian Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceived the idea: K.-H.W., X.H., and L.-J.C. Performed the experimental studies: K.-H.W. and X.H. Performed theoretical simulations of the acoustic topological structures: K.-H.W. and X.H. Solved the Ginzburg-Landau model: Z.S. Analyzed the data and drew the figures: K.-H.W., L.-T.Z., X.H., and L.-J.C. All authors contributed to the discussions of the results and manuscript preparation. Supervised the Ginzburg-Landau model: Q.H.L. Supervised the research: L.-J.C., X.H., and S.-S.L.

Corresponding authors

Correspondence to Sen-Sen Li, Xuejia Hu or Lu-Jian Chen.

Ethics declarations

Competing interests

The authors declare no conflicts of interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, KH., Sun, Z., Zhu, LT. et al. Harnessing acoustic topology for dynamic control of liquid crystal defects. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68001-y

Download citation

  • Received: 19 August 2025

  • Accepted: 15 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68001-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing