Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Tumour-intrinsic features shape T cell differentiation through precursor to symptomatic multiple myeloma
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Tumour-intrinsic features shape T cell differentiation through precursor to symptomatic multiple myeloma

  • Kane A. Foster1,
  • Elise Rees  ORCID: orcid.org/0000-0001-8169-07761,
  • Louise Ainley1,2,
  • Annabel Laidler  ORCID: orcid.org/0009-0003-9982-10861,
  • Eileen M. Boyle1,2,
  • Lydia Lee  ORCID: orcid.org/0000-0002-6092-89491,2,
  • Gwennan Ward1,
  • Daria Galas-Filipowicz  ORCID: orcid.org/0000-0002-4557-154X1,
  • Evelyn Fitzsimons1,
  • Anna Mikolajczak  ORCID: orcid.org/0009-0002-0603-68671,
  • Emma J. Lyon1,
  • Dylan Jankovic  ORCID: orcid.org/0000-0002-7148-00271,
  • Jasmine Rahman1,
  • Mahima Turakhia1,
  • Dipal Mehta1,2,
  • Conor Garrod-Ketchley1,
  • Imran Uddin  ORCID: orcid.org/0000-0003-0736-31493,4,
  • Gordon Beattie3,4,
  • Yvette Hoade1,
  • Catherine Zhu1,2,
  • James L. Reading  ORCID: orcid.org/0000-0001-5381-978X5,6,
  • Ieuan Walker7,8,
  • Michael Chapman7,8,
  • Karthik Ramasamy9,
  • Javier Herrero  ORCID: orcid.org/0000-0001-7313-717X10,
  • Benny Chain  ORCID: orcid.org/0000-0002-7417-397011,12,
  • Sergio A. Quezada  ORCID: orcid.org/0000-0002-9763-17006,13 &
  • …
  • Kwee L. Yong  ORCID: orcid.org/0000-0002-6487-276X1,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Myeloma
  • T cells
  • Tumour immunology

Abstract

Multiple myeloma (MM) is associated with skewed T cell activation and function which is present in asymptomatic myeloma precursor conditions, but underlying mechanisms of progression remain undefined. Here, we assemble a large single-cell RNA sequencing dataset of the bone marrow and blood from patients with MM, precursor conditions, and non-cancer controls. We demonstrate that, unlike solid cancers, MM is not characterized by T cell exhaustion, but by antigen-driven terminal memory differentiation. This is influenced by tumour-intrinsic features including tumour burden and expression of antigen-presentation genes. Expanded TCR clones accumulating in MM are not enriched with viral specificities but accumulate in effector states in highly-infiltrated marrows. Additionally, we identify a role for T cell dynamics in patients treated with autologous stem cell transplantation and demonstrate T cell features predict progression from precursor to symptomatic MM. Together, these results suggest that anti-tumour immunity drives a distinctive form of cancer-associated T cell differentiation in MM.

Data availability

The unprocessed sequencing data have been deposited in the Sequence Read Archive under the accession PRJNA1401834. The processed single-cell RNA and TCR data (CellRanger outputs) have been deposited in the Zenodo repository under the accession 13171648. The full integrated single-cell RNA and TCR datasets and cohort information have been deposited in the Zenodo repository under the accession 17418275. All data are included in the Supplementary Information or available from the authors, as are unique reagents used in this Article. The raw numbers for charts and graphs are available in the Source Data file whenever possible. Source data are provided with this paper.

Code availability

The code to reproduce the analysis has been deposited on GitHub under the accession kanefos/myeloma-singlecell.

References

  1. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Google Scholar 

  2. Kay Chung, H., McDonald, B. & Kaech, S. M. The architectural design of CD8+ T cell responses in acute and chronic infection: parallel structures with divergent fates. J. Exp. Med. 218, e20201730 (2021).

  3. Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    Google Scholar 

  4. van de Donk, N. W. C. J., Pawlyn, C. & Yong, K. L. Multiple myeloma. Lancet 397, 410–427 (2021).

    Google Scholar 

  5. Mateos, M. V. et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 10, 1–11 (2020).

    Google Scholar 

  6. Landgren, O. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113, 5412–5417 (2009).

    Google Scholar 

  7. Cohen, A. D. et al. How to train your T cells: overcoming immune dysfunction in multiple myeloma a C. Clin. Cancer Res. 26, 1541–1554 (2020).

    Google Scholar 

  8. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 228, 484–498 (2021).

    Google Scholar 

  9. Di Rosa, F. Maintenance of memory T cells in the bone marrow: survival or homeostatic proliferation? Nat. Rev. Immunol. 16, 271–271 (2016).

    Google Scholar 

  10. Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 583–609 (2021).

    Google Scholar 

  11. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Google Scholar 

  12. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    Google Scholar 

  13. Wagner, T. R. et al. Conserved programs and specificities of T cells targeting hematological malignancies. bioRxiv 08, 668919 (2025).

    Google Scholar 

  14. Friedrich, M. J. et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 41, 711–725 (2023).

  15. Vuckovic, S. et al. Bone marrow transplantation generates T cell–dependent control of myeloma in mice. J. Clin. Invest. 129, 106–121 (2019).

    Google Scholar 

  16. Chung, D. J. et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol. Res. 4, 61–71 (2016).

    Google Scholar 

  17. De Tute, R. M. et al. Minimal residual disease after autologous stem-cell transplant for patients with myeloma: prognostic significance and the impact of lenalidomide maintenance and molecular risk. J. Clin. Oncol. 40, 2889–2900 (2022).

    Google Scholar 

  18. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

  19. Kourelis, T. V. et al. Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J. 9, 72 (2019).

  20. Meermeier, E. W., Bergsagel, P. L. & Chesi, M. Next-generation therapies for multiple myeloma. Annu. Rev. Cancer Biol. 8, 351–371 (2024).

  21. Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).

    Google Scholar 

  22. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e12 (2021).

    Google Scholar 

  23. Hudson, W. H. & Wieland, A. Technology meets TILs: deciphering T cell function in the -omics era. Cancer Cell 41, 41–57 (2023).

    Google Scholar 

  24. Shasha, C. et al. Hallmarks of T-cell exhaustion and antigen experience are absent in multiple myeloma from diagnosis to maintenance therapy. Blood 145, 3113–3123 (2025).

    Google Scholar 

  25. Lutz, R. et al. Bone marrow breakout lesions act as key sites for tumor-immune cell diversification in multiple myeloma. Sci. Immunol. 10, eadp6667 (2025).

    Google Scholar 

  26. Sklavenitis-Pistofidis, R. et al. Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma. Cancer Cell 40, 1358–1373.e8 (2022).

    Google Scholar 

  27. Zavidij, O. et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 1, 493–506 (2020).

    Google Scholar 

  28. Bailur, J. K. et al. Early alterations in stem-like/marrow-resident T cells and innate and myeloid cells in preneoplastic gammopathy. JCI Insight 4, e127807 (2019).

  29. Dang, M. et al. Single cell clonotypic and transcriptional evolution of multiple myeloma precursor disease. Cancer Cell 41, 1032–1047.e4 (2023).

    Google Scholar 

  30. Ludwig, H., Meckl, A. & Engelhardt, M. Compliance with vaccination recommendations among patients with multiple myeloma: a real world experience. HemaSphere https://doi.org/10.1097/HS9.0000000000000597 (2021).

  31. Noonan, K. et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res. 65, 2026–2034 (2005).

    Google Scholar 

  32. Perumal, D. et al. Mutation-derived neoantigen specific T cell responses in multiple myeloma. Clin. Cancer Res. 26, 450 (2020).

    Google Scholar 

  33. Vuckovic, S. et al. Inverse relationship between oligoclonal expanded CD69- TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients. Blood Adv. 4, 4593–4604 (2020).

    Google Scholar 

  34. de Jong, M. M. E. et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat. Immunol. 226, 769–780 (2021).

    Google Scholar 

  35. Henson, S. M. & Akbar, A. N. Memory T-cell homeostasis and senescence during aging. Adv. Exp. Med. Biol. 684, 189–197 (2010).

    Google Scholar 

  36. Lee, L. et al. Increased immune-regulatory receptor expression on effector T cells as early indicators of relapse following autologous stem cell transplantation for multiple myeloma. Front. Immunol. 12, 618610 (2021).

  37. Trojan, A. et al. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat. Med. 66, 667–672 (2000).

    Google Scholar 

  38. Kawano, Y. et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J. Clin. Invest. 128, 2487–2499 (2018).

    Google Scholar 

  39. Alrasheed, N. et al. Marrow-infiltrating regulatory T cells correlate with the presence of dysfunctional CD4þPD-1þ cells and inferior survival in patients with newly diagnosed multiple myeloma. Clin. Cancer Res. 26, 3443–3454 (2020).

    Google Scholar 

  40. Méndez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 205, 285–298 (2020).

    Google Scholar 

  41. Royle, K. L. et al. Risk and response adapted therapy following autologous stem cell transplant in patients with newly diagnosed multiple myeloma (RADAR (UK-MRA Myeloma XV Trial): study protocol for a phase II/III randomised controlled trial. BMJ Open 12, e063037 (2022).

  42. Yong, K. et al. Upfront autologous haematopoietic stem-cell transplantation versus carfilzomib-cyclophosphamide-dexamethasone consolidation with carfilzomib maintenance in patients with newly diagnosed multiple myeloma in England and Wales (CARDAMON): a randomised, phase 2, non-inferiority trial. Lancet Haematol. 10, e93–e106 (2023).

    Google Scholar 

  43. Kfoury, Y. et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 39, 1464–1478.e8 (2021).

    Google Scholar 

  44. Botta, C. et al. Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance. Nat. Commun 141, 1–15 (2023).

    Google Scholar 

  45. Liu, R. et al. Co-evolution of tumor and immune cells during progression of multiple myeloma. Nat. Commun. 121, 1–18 (2021).

    Google Scholar 

  46. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 275, 904–916 (2021).

    Google Scholar 

  47. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 80, 376 (2022).

    Google Scholar 

  48. Oetjen, K. A. et al. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight 3, e124928 (2018).

  49. Maura, F. et al. Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens. Nat. Cancer 412, 1660–1674 (2023).

    Google Scholar 

  50. Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 3712, 1458–1465 (2019).

    Google Scholar 

  51. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 1–5 (2018).

    Google Scholar 

  52. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Google Scholar 

  53. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 402, 163–166 (2022).

    Google Scholar 

  54. Agrawal, A., Ali, A. & Boyd, S. Minimum-distortion embedding. Found. Trends Mach. Learn. 14, 211–378 (2021).

    Google Scholar 

  55. Araúzo-Bravo, M. J., Izeta, A. & Ascensión, A. M. The need to reassess single-cell RNA sequencing datasets: the importance of biological sample processing. F1000Res. 10, 767 (2021).

  56. Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 296, 1550–1562 (2023).

    Google Scholar 

  57. Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    Google Scholar 

  58. Garner, L. C. et al. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nat. Immunol. 249, 1565–1578 (2023).

    Google Scholar 

  59. Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8, 1–14 (2019).

    Google Scholar 

  60. Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).

    Google Scholar 

  61. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).

    Google Scholar 

  62. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 296, 1563–1577 (2023).

    Google Scholar 

  63. Simpson, E. H. Measurement of diversity [16]. Nature 163, 688 (1949).

    Google Scholar 

  64. Dash, P. et al. Quantifiable predictive features define epitope specific T cell receptor repertoires. Nature 547, 89 (2017).

    Google Scholar 

  65. Orenbuch, R. et al. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics 36, 33–40 (2020).

    Google Scholar 

  66. Bagaev, D. V. et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–D1062 (2020).

    Google Scholar 

  67. Fleri, W. et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 8, 250318 (2017).

    Google Scholar 

  68. Koşaloǧlu-Yalçın, Z. et al. The Cancer Epitope Database and Analysis Resource (CEDAR). Nucleic Acids Res. 51, D845–D852 (2023).

    Google Scholar 

  69. Joshi, K. et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat. Med. 2510, 1549–1559 (2019).

    Google Scholar 

  70. González, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).

    Google Scholar 

  71. Kaiser, M. F. et al. A TC classification-based predictor for multiple myeloma using multiplexed real-time quantitative PCR. Leukemia 278, 1754–1757 (2013).

    Google Scholar 

  72. Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 6187965, 598–606 (2023).

    Google Scholar 

  73. Türei, D., Korcsmáros, T. & Saez-Rodriguez, J. OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods 13, 966–967 (2016).

    Google Scholar 

  74. Bauer, M. A. et al. Differential RNA splicing as a potentially important driver mechanism in multiple myeloma. Haematologica 106, 736–745 (2021).

    Google Scholar 

Download references

Acknowledgements

This research was funded by Cancer Research UK Early Detection and Diagnosis Programme award No. C9203/A28770). E.M.B is supported by the Wellcome Trust, A.L is supported by Myeloma UK. This work was funded in part by the University College London/UCL Hospitals Biomedical Research Centre. We thank members of the CARDAMON, COSMOS and RADAR teams, the UCL Cancer Trials Centre, the Leeds Clinical Trials Research Unit, and all patients who participated in these studies. We thank the Multiple Myeloma Research Foundation (MMRF), the Perelman Family Foundation, and the International Myeloma Society.

Author information

Authors and Affiliations

  1. Research Department of Haematology, University College London Cancer Institute, London, UK

    Kane A. Foster, Elise Rees, Louise Ainley, Annabel Laidler, Eileen M. Boyle, Lydia Lee, Gwennan Ward, Daria Galas-Filipowicz, Evelyn Fitzsimons, Anna Mikolajczak, Emma J. Lyon, Dylan Jankovic, Jasmine Rahman, Mahima Turakhia, Dipal Mehta, Conor Garrod-Ketchley, Yvette Hoade, Catherine Zhu & Kwee L. Yong

  2. University College London Hospitals NHS Foundation Trust, London, UK

    Louise Ainley, Eileen M. Boyle, Lydia Lee, Dipal Mehta, Catherine Zhu & Kwee L. Yong

  3. CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK

    Imran Uddin & Gordon Beattie

  4. Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK

    Imran Uddin & Gordon Beattie

  5. Pre-Cancer Immunology Laboratory, UCL Cancer Institute, London, UK

    James L. Reading

  6. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK

    James L. Reading & Sergio A. Quezada

  7. MRC Toxicology Unit, Cambridge, UK

    Ieuan Walker & Michael Chapman

  8. Cambridge University Hospitals NHS Trust, Cambridge, UK

    Ieuan Walker & Michael Chapman

  9. Oxford University Hospitals, NHS Foundation Trust, Oxford, UK

    Karthik Ramasamy

  10. Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK

    Javier Herrero

  11. Division of Infection and Immunity, University College London, London, UK

    Benny Chain

  12. Department of Computer Sciences, University College London, London, UK

    Benny Chain

  13. Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK

    Sergio A. Quezada

Authors
  1. Kane A. Foster
    View author publications

    Search author on:PubMed Google Scholar

  2. Elise Rees
    View author publications

    Search author on:PubMed Google Scholar

  3. Louise Ainley
    View author publications

    Search author on:PubMed Google Scholar

  4. Annabel Laidler
    View author publications

    Search author on:PubMed Google Scholar

  5. Eileen M. Boyle
    View author publications

    Search author on:PubMed Google Scholar

  6. Lydia Lee
    View author publications

    Search author on:PubMed Google Scholar

  7. Gwennan Ward
    View author publications

    Search author on:PubMed Google Scholar

  8. Daria Galas-Filipowicz
    View author publications

    Search author on:PubMed Google Scholar

  9. Evelyn Fitzsimons
    View author publications

    Search author on:PubMed Google Scholar

  10. Anna Mikolajczak
    View author publications

    Search author on:PubMed Google Scholar

  11. Emma J. Lyon
    View author publications

    Search author on:PubMed Google Scholar

  12. Dylan Jankovic
    View author publications

    Search author on:PubMed Google Scholar

  13. Jasmine Rahman
    View author publications

    Search author on:PubMed Google Scholar

  14. Mahima Turakhia
    View author publications

    Search author on:PubMed Google Scholar

  15. Dipal Mehta
    View author publications

    Search author on:PubMed Google Scholar

  16. Conor Garrod-Ketchley
    View author publications

    Search author on:PubMed Google Scholar

  17. Imran Uddin
    View author publications

    Search author on:PubMed Google Scholar

  18. Gordon Beattie
    View author publications

    Search author on:PubMed Google Scholar

  19. Yvette Hoade
    View author publications

    Search author on:PubMed Google Scholar

  20. Catherine Zhu
    View author publications

    Search author on:PubMed Google Scholar

  21. James L. Reading
    View author publications

    Search author on:PubMed Google Scholar

  22. Ieuan Walker
    View author publications

    Search author on:PubMed Google Scholar

  23. Michael Chapman
    View author publications

    Search author on:PubMed Google Scholar

  24. Karthik Ramasamy
    View author publications

    Search author on:PubMed Google Scholar

  25. Javier Herrero
    View author publications

    Search author on:PubMed Google Scholar

  26. Benny Chain
    View author publications

    Search author on:PubMed Google Scholar

  27. Sergio A. Quezada
    View author publications

    Search author on:PubMed Google Scholar

  28. Kwee L. Yong
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation: B.C., S.A.Q., and K.L.Y. Methodology: E.R., L.A., A.L., E.M.B., L.L., G.W., D.G.F., E.F., A.M., E.J.L., D.J., J.R., M.T., D.M., C.G.K., I.U., G.B., Y.H., C.Z., I.W., and M.C. Investigation: K.A.F. Funding acquisition: L.L., K.R., B.C., S.A.Q., and K.L.Y. Project administration: B.C., S.A.Q., and K.L.Y. Supervision: E.M.B., J.L.R., J.H., B.C., S.A.Q., and K.L.Y. Writing—original draft: K.A.F. Writing—review and editing: K.A.F., E.R., L.A., A.L., E.M.B., L.L., B.C., S.A.Q., and K.L.Y.

Corresponding authors

Correspondence to Benny Chain, Sergio A. Quezada or Kwee L. Yong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks P. Leif Bergsagel, Arun Wiita, who co-reviewed with Bonell Patiño-Escobar, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, K.A., Rees, E., Ainley, L. et al. Tumour-intrinsic features shape T cell differentiation through precursor to symptomatic multiple myeloma. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68718-4

Download citation

  • Received: 22 June 2025

  • Accepted: 15 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68718-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer