Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Molecular signatures of resilience to Alzheimer’s disease in neocortical layer 4 neurons
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 January 2026

Molecular signatures of resilience to Alzheimer’s disease in neocortical layer 4 neurons

  • S. Akila Parvathy Dharshini1,
  • Jorge Sanz-Ros  ORCID: orcid.org/0000-0002-6598-056X1,
  • Jie Pan  ORCID: orcid.org/0000-0002-1973-80191,
  • Weijing Tang1,
  • Kristen Vallejo  ORCID: orcid.org/0009-0005-1418-79311,
  • Yu Chen Liu1,
  • Marcos Otero-Garcia1 &
  • …
  • Inma Cobos  ORCID: orcid.org/0000-0002-2043-18901 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Alzheimer's disease
  • Dementia

Abstract

Selective neuronal vulnerability is a hallmark of Alzheimer’s disease (AD), yet the molecular basis of resilience remains poorly understood. Using single-nucleus and spatial transcriptomics to compare neocortical regions affected early (prefrontal cortex, precuneus) or late (primary visual cortex) in AD, we identified a resilient excitatory population in layer 4 of the primary visual cortex expressing RORB, CUX2, and EYA4. Layer 4 neurons in association neocortex shared molecular signatures of resilience. Early-stage resilient neurons upregulated genes associated with synapse maintenance, synaptic plasticity, calcium homeostasis, and neuroprotection (GRIN2A, RORA, NRXN1, NLGN1, NCAM2, FGF14, NRG3, NEGR1, CSMD1). We identified KCNIP4, which encodes a voltage-gated potassium channel-interacting protein, as a key resilience factor consistently upregulated during early stages of AD pathology. AAV-mediated overexpression of Kcnip4 in male AppSAA mice reduced the expression of activity-dependent genes Arc and c-Fos, suggesting compensatory mechanisms against neuronal hyperexcitability. Our dataset provides a resource for investigating mechanisms underlying resilience to neurodegeneration.

Data availability

The raw snRNA-seq data, associated metadata, and processed digital expression matrices have been deposited at the NCBI’s Gene Expression Omnibus with accession number GSE263468. Eight of 243 samples were included in previous studies (GSE129308 and GSE181715). The snRNA-seq datasets are publicly available for interactive viewing and exploration on the Cellxgene platform at https://cellxgene.cziscience.com/collections/0d35c0fd-ef0b-4b70-bce6-645a4660e5fa. The Xenium dataset is publicly available at Zenodo: https://zenodo.org/records/16703438. Source data are provided with this paper.

Code availability

The scripts and the pretrained models are available at GitHub and accessible at Zenodo: https://doi.org/10.5281/zenodo.1811352891

References

  1. Mathys, H. et al. Single-cell multiregion dissection of Alzheimer’s disease. Nature 632, 858–868 (2024).

  2. Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

    Google Scholar 

  3. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Google Scholar 

  4. Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948e2928 (2022).

    Google Scholar 

  5. Green, G. S. et al. Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease. Nature 633, 634–645 (2024).

    Google Scholar 

  6. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Google Scholar 

  7. Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453e4423 (2023).

    Google Scholar 

  8. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e4327 (2023).

    Google Scholar 

  9. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Google Scholar 

  10. Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8, 1–13 (2012).

    Google Scholar 

  11. Du, A. T. et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166 (2007).

    Google Scholar 

  12. Ossenkoppele, R. et al. Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. Neurology 92, e601–e612 (2019).

    Google Scholar 

  13. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Google Scholar 

  14. Palomero-Gallagher, N. & Zilles, K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 197, 716–741 (2019).

    Google Scholar 

  15. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).

    Google Scholar 

  16. Wei, J. R. et al. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat. Commun. 13, 6902 (2022).

    Google Scholar 

  17. von Economo, C. & Koskinas, G. N. The Cytoarchitectonics of the Human Cerebral Cortex (Oxford University Press, London, 1929).

  18. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Google Scholar 

  19. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and Arealization of the Cerebral Cortex. Neuron 103, 980–1004 (2019).

    Google Scholar 

  20. Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med 1, a006189 (2011).

    Google Scholar 

  21. Duyckaerts, C., Delatour, B. & Potier, M. C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118, 5–36 (2009).

    Google Scholar 

  22. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    Google Scholar 

  23. Gabitto, M. I. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Nat. Neurosci. 27, 2366–2383 (2024).

  24. Xia, D. et al. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol. Neurodegener. 17, 41 (2022).

    Google Scholar 

  25. Gerrits, E. et al. Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 141, 681–696 (2021).

    Google Scholar 

  26. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Google Scholar 

  27. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012).

    Google Scholar 

  28. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241e3226 (2021).

    Google Scholar 

  29. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Google Scholar 

  30. Rockland, K. S. & Pandya, D. N. Cortical connections of the occipital lobe in the rhesus monkey: interconnections between areas 17, 18, 19 and the superior temporal sulcus. Brain Res. 212, 249–270 (1981).

    Google Scholar 

  31. Garcia-Cabezas, M. A., Hacker, J. L. & Zikopoulos, B. A Protocol for Cortical Type Analysis of the Human Neocortex Applied on Histological Samples, the Atlas of Von Economo and Koskinas, and Magnetic Resonance Imaging. Front Neuroanat. 14, 576015 (2020).

    Google Scholar 

  32. Balaram, P., Young, N. A. & Kaas, J. H. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain 2014, 5–18 (2014).

    Google Scholar 

  33. Balaram, P. & Kaas, J. H. Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front. Neuroanat. 8, 81 (2014).

    Google Scholar 

  34. Buttner, M., Ostner, J., Muller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    Google Scholar 

  35. Consens, M. E. et al. Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimer’s Disease. Front. Mol. Neurosci. 15, 903175 (2022).

    Google Scholar 

  36. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Google Scholar 

  37. Junttila, S., Smolander, J. & Elo, L. L. Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data. Brief Bioinform 23 (2022).

  38. Zhang, M., Bouland, G. A., Holstege, H. & Reinders, M. J. T. Identifying Aging and Alzheimer Disease-Associated Somatic Variations in Excitatory Neurons From the Human Frontal Cortex. Neurol. Genet. 9, e200066 (2023).

    Google Scholar 

  39. Prokopenko, D. et al. Region-based analysis of rare genomic variants in whole-genome sequencing datasets reveal two novel Alzheimer’s disease-associated genes: DTNB and DLG2. Mol. Psychiatry 27, 1963–1969 (2022).

    Google Scholar 

  40. Park, J. H. et al. Novel Alzheimer’s disease risk variants identified based on whole-genome sequencing of APOE epsilon4 carriers. Transl. Psychiatry 11, 296 (2021).

    Google Scholar 

  41. Wang, K. S. et al. NRG3 gene is associated with the risk and age at onset of Alzheimer disease. J. Neural Transm. 121, 183–192 (2014).

    Google Scholar 

  42. Werren, E. A. et al. Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations. Cell Death Dis. 15, 379 (2024).

    Google Scholar 

  43. Athanasiu, L. et al. A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav. Immun. 61, 209–216 (2017).

    Google Scholar 

  44. Baum, M. L. et al. CSMD1 regulates brain complement activity and circuit development. Brain Behav. Immun. 119, 317–332 (2024).

    Google Scholar 

  45. Morohashi, Y. et al. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J. Biol. Chem. 277, 14965–14975 (2002).

    Google Scholar 

  46. Shulman, J. M. et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol. 70, 1150–1157 (2013).

    Google Scholar 

  47. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Google Scholar 

  48. An, W. F. et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556 (2000).

    Google Scholar 

  49. Simon, R. C. et al. Opto-seq reveals input-specific immediate-early gene induction in ventral tegmental area cell types. Neuron 112, 2721–2731e2725 (2024).

    Google Scholar 

  50. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    Google Scholar 

  51. Leuba, G. & Kraftsik, R. Visual cortex in Alzheimer’s disease: occurrence of neuronal death and glial proliferation, and correlation with pathological hallmarks. Neurobiol. Aging 15, 29–43 (1994).

    Google Scholar 

  52. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    Google Scholar 

  53. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 16, 311–322 (2017).

    Google Scholar 

  54. Targa Dias Anastacio, H., Matosin, N. & Ooi, L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl. Psychiatry 12, 257 (2022).

    Google Scholar 

  55. Liu, Z. et al. Single-cell multiregion epigenomic rewiring in Alzheimer’s disease progression and cognitive resilience. Cell 188, 4980–5002 (2025).

  56. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Google Scholar 

  57. Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453 (2023).

  58. Hof, P. R., Cox, K. & Morrison, J. H. Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J. Comp. Neurol. 301, 44–54 (1990).

    Google Scholar 

  59. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Google Scholar 

  60. Kitazawa, M., Kubo, Y. & Nakajo, K. The stoichiometry and biophysical properties of the Kv4 potassium channel complex with K+ channel-interacting protein (KChIP) subunits are variable, depending on the relative expression level. J. Biol. Chem. 289, 17597–17609 (2014).

    Google Scholar 

  61. Buxbaum, J. D. et al. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat. Med. 4, 1177–1181 (1998).

    Google Scholar 

  62. Polans, A. S. et al. Recoverin, a photoreceptor-specific calcium-binding protein, is expressed by the tumor of a patient with cancer-associated retinopathy. Proc. Natl. Acad. Sci. USA 92, 9176–9180 (1995).

    Google Scholar 

  63. Mattson, M. P. & Arumugam, T. V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 27, 1176–1199 (2018).

    Google Scholar 

  64. Slutsky, I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat. Rev. Neurosci. 25, 272–284 (2024).

    Google Scholar 

  65. Li, S. B. et al. Hyperexcitable arousal circuits drive sleep instability during aging. Science 375, eabh3021 (2022).

    Google Scholar 

  66. Vossel, K. et al. Effect of Levetiracetam on Cognition in Patients With Alzheimer Disease With and Without Epileptiform Activity: A Randomized Clinical Trial. JAMA Neurol. 78, 1345–1354 (2021).

    Google Scholar 

  67. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA 109, E2895–E2903 (2012).

    Google Scholar 

  68. Shigihara, Y., Hoshi, H., Shinada, K., Okada, T. & Kamada, H. Non-pharmacological treatment changes brain activity in patients with dementia. Sci. Rep. 10, 6744 (2020).

    Google Scholar 

  69. Mirra, S. S. et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 479–486 (1991).

    Google Scholar 

  70. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Google Scholar 

  71. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202–1214 (2015).

    Google Scholar 

  72. Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).

    Google Scholar 

  73. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    Google Scholar 

  74. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst. 8, 329–337.e324 (2019).

    Google Scholar 

  75. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Google Scholar 

  76. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Google Scholar 

  77. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

    Google Scholar 

  78. Mollie, E. et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R. J. 9, 378–400 (2017).

    Google Scholar 

  79. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    Google Scholar 

  80. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Google Scholar 

  81. Shen, R. et al. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding. Nat. Commun. 13, 7640 (2022).

    Google Scholar 

  82. Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res Methods 49, 1494–1502 (2017).

    Google Scholar 

  83. Muzellec, B., Teleńczuk, M., Cabeli, V. & Andreux, M. PyDESeq2: a python package for bulk RNA-seq differential expression analysis. Bioinformatics 39, btad547 (2023).

  84. Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).

  85. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Google Scholar 

  86. Kolberg, L. et al. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res 51, W207–W212 (2023).

    Google Scholar 

  87. Consortium, G. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

  88. Koopmans, F. et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 103, 217–234.e214 (2019).

    Google Scholar 

  89. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).

    Google Scholar 

  90. Beaudoin, G. M. et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741–1754 (2012).

    Google Scholar 

  91. Dharsini, S. A. P. et al. Molecular Signatures of Resilience to Alzheimer’s Disease in Neocortical Layer 4 Neurons. Zenodo, https://doi.org/10.5281/zenodo.18113528 (2026).

Download references

Acknowledgements

Human tissue was obtained from Stanford’s Department of Pathology and Alzheimer’s Disease Research Center (NIH/NIA P30AG066515), UCLA Department of Pathology and Easton Center, and the NIH Neurobiobank (Sepulveda repository in Los Angeles, CA and Mt. Sinai Brain Bank in New York City, NY). This work was supported by grants to I.C. from NIH/NIA (R01AG059848, R01AG082147), BrightFocus (A20173465), the Alzheimer’s Association (AARG-17-528298), and the Chan Zuckerberg Initiative (Ben Barres Early Career Acceleration Award, grant ID 199150).

Author information

Authors and Affiliations

  1. Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

    S. Akila Parvathy Dharshini, Jorge Sanz-Ros, Jie Pan, Weijing Tang, Kristen Vallejo, Yu Chen Liu, Marcos Otero-Garcia & Inma Cobos

Authors
  1. S. Akila Parvathy Dharshini
    View author publications

    Search author on:PubMed Google Scholar

  2. Jorge Sanz-Ros
    View author publications

    Search author on:PubMed Google Scholar

  3. Jie Pan
    View author publications

    Search author on:PubMed Google Scholar

  4. Weijing Tang
    View author publications

    Search author on:PubMed Google Scholar

  5. Kristen Vallejo
    View author publications

    Search author on:PubMed Google Scholar

  6. Yu Chen Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Marcos Otero-Garcia
    View author publications

    Search author on:PubMed Google Scholar

  8. Inma Cobos
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: S.A.P.D., I.C.; Human tissue procurement and Neuropathology: K.V., I.C.; Single-nuclear transcriptomics data generation: M.O.G., J.P.; Spatial transcriptomics data generation: J.P., J.S.R; Data analysis: S.A.P.D., W.T.; Histology: J.S.R., J.P., K.V., Y.C.L.; Functional assays in mice: J.S.R.; Funding acquisition: I.C.; Supervision: I.C.; Writing: S.A.P.D., J.S.R., I.C.; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Inma Cobos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Shreejoy Tripathy and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharshini, S.A.P., Sanz-Ros, J., Pan, J. et al. Molecular signatures of resilience to Alzheimer’s disease in neocortical layer 4 neurons. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68920-4

Download citation

  • Received: 30 October 2025

  • Accepted: 20 January 2026

  • Published: 31 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68920-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing