Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
VSIG10L is a major determinant of esophageal homeostasis and inherited predisposition to Barrett’s esophagus
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

VSIG10L is a major determinant of esophageal homeostasis and inherited predisposition to Barrett’s esophagus

  • Durgadevi Ravillah1,
  • Salendra Singh  ORCID: orcid.org/0000-0002-4903-98682,
  • Ramachandra M. Katabathula1,
  • Adam M. Kresak3,
  • Bhavatharini Udhayakumar  ORCID: orcid.org/0000-0002-2305-63361,
  • Rajesh Gupta4,
  • Wendy Brock4,
  • Yosuke Mitani  ORCID: orcid.org/0000-0003-1603-00045,
  • Vaibhav Jain6,
  • Emily Hocke  ORCID: orcid.org/0000-0002-0976-58146,
  • Simon G. Gregory  ORCID: orcid.org/0000-0002-7805-17436,7,8,
  • Katherine S. Garman9,
  • Joel T. Gabre5,
  • Hisashi Fujioka10,
  • Joseph E. Willis3,
  • Amitabh Chak  ORCID: orcid.org/0000-0002-0021-78624,11 &
  • …
  • Kishore Guda  ORCID: orcid.org/0000-0001-8218-78301,3,4 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer prevention
  • Gastrointestinal diseases
  • Genetic association study
  • Oesophageal cancer

Abstract

The molecular underpinnings contributing to the onset of Barrett’s esophagus (BE) remain elusive. By studying familial clusters of the disease, here we identify a significant association between genetic variants in the V-set and Immunoglobulin Domain Containing 10 Like (VSIG10L) gene and BE predisposition. Using mammalian tissues and patient-derived organoids, we show VSIG10L is selectively expressed in the suprabasal squamous cells of the esophageal mucosa and is essential for epithelial maturation and homeostasis. Mice carrying human-orthologous germline mutations in Vsig10l exhibit loss of desmosomes, concomitant with disrupted epithelial differentiation programs, in the squamous mucosa. Upon long-term exposure to a bile acid (deoxycholate) supplemented diet, Vsig10l-mutant mice develop overt BE-like lesions in the forestomach. Furthermore, loss of esophageal VSIG10L expression is observed frequently in patients with chronic gastroesophageal reflux disease, a known risk factor for BE. Collectively, our study uncovers a fundamental link between VSIG10L, esophageal homeostasis, and BE predisposition.

Data availability

All data supporting the findings of this study are available within the manuscript. Respective publicly-accessible databases (such as gnomAD and ExAC) were cited within the main text. Sharing of VSIG10L raw DNA sequencing data from familial subjects will be considered following formal written request by investigators to the corresponding author. All requests pertaining to the data in the current study will be processed in 3-5 weeks from the date of request. All data access requests will undergo in-depth review by University Hospitals Cleveland Medical Center Institutional Review Board (and by a genetic counselor) to ensure that distribution complies with ethical, institutional, and material-transfer guidelines, while ensuring strict confidentiality of the familial relationships. Source data are provided with this paper.

References

  1. Stawinski, P. M., Dziadkowiec, K. N., Kuo, L. A., Echavarria, J., & Saligram, S. Barrett’s esophagus: an updated review. Diagnostics 13, 321 (2023).

  2. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10–45 (2025).

    Google Scholar 

  3. Rubenstein, J. H. & Shaheen, N. J. Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 149, 302–317 e301 (2015).

    Google Scholar 

  4. Shaheen, N. J., Falk, G. W., Iyer, P. G. & Gerson, L. B. American College of G. ACG Clinical Guideline: diagnosis and management of Barrett’s esophagus. Am. J. Gastroenterol. 111, 30–50; quiz 51 (2016).

    Google Scholar 

  5. American Gastroenterological, A., Spechler, S. J., Sharma, P., Souza, R. F., Inadomi, J. M. & Shaheen, N. J. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology 140, 1084–1091 (2011).

    Google Scholar 

  6. Spechler, S. J. Clinical practice. Barrett’s Esophagus. N. Engl. J. Med. 346, 836–842 (2002).

    Google Scholar 

  7. Que, J., Garman, K. S., Souza, R. F. & Spechler, S. J. Pathogenesis and cells of origin of Barrett’s esophagus. Gastroenterology 157, 349–364 e341 (2019).

    Google Scholar 

  8. Chak, A. et al. Familial aggregation of Barrett’s oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults. Gut 51, 323–328 (2002).

    Google Scholar 

  9. Chak, A. et al. Identification of Barrett’s esophagus in relatives by endoscopic screening. Am. J. Gastroenterol. 99, 2107–2114 (2004).

    Google Scholar 

  10. Juhasz, A. et al. Prevalence of Barrett esophagus in first-degree relatives of patients with esophageal adenocarcinoma. J. Clin. Gastroenterol. 45, 867–871 (2011).

    Google Scholar 

  11. Sun, X. et al. Linkage and related analyses of Barrett’s esophagus and its associated adenocarcinomas. Mol. Genet Genom. Med 4, 407–419 (2016).

    Google Scholar 

  12. Sun, X. et al. Predicting Barrett’s esophagus in families: an esophagus translational research network (BETRNet) model fitting clinical data to a familial paradigm. Cancer Epidemiol. Biomark. Prev. 25, 727–735 (2016).

    Google Scholar 

  13. Sun, X. et al. A segregation analysis of Barrett’s esophagus and associated adenocarcinomas. Cancer Epidemiol. Biomark. Prev. 19, 666–674 (2010).

    Google Scholar 

  14. Fecteau, R. E. et al. Association between germline mutation in VSIG10L and familial barrett neoplasia. JAMA Oncol. 2, 1333–1339 (2016).

    Google Scholar 

  15. Chak, A. et al. Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol. Biomark. Prev. 15, 1668–1673 (2006).

    Google Scholar 

  16. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Google Scholar 

  17. Harada, H. et al. Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol. Cancer Res 1, 729–738 (2003).

    Google Scholar 

  18. Venkitachalam, S. et al. The ephrin B2 receptor tyrosine kinase is a regulator of proto-oncogene MYC and molecular programs central to Barrett’s neoplasia. Gastroenterology 163, 1228–1241 (2022).

    Google Scholar 

  19. Kowalczyk, A. P. & Green, K. J. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118 (2013).

    Google Scholar 

  20. Green, K. J. & Simpson, C. L. Desmosomes: new perspectives on a classic. J. Investig. Dermatol. 127, 2499–2515 (2007).

    Google Scholar 

  21. Dimitrova, N. et al. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer. Oncogene 36, 2472–2482 (2017).

    Google Scholar 

  22. Blum, A. E. et al. Systems biology analyses show hyperactivation of transforming growth factor-beta and JNK signaling pathways in esophageal cancer. Gastroenterology 156, 1761–1774 (2019).

    Google Scholar 

  23. Maslenkina K. et al. Signaling pathways in the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Int. J. Mol. Sci. 24, 9304 (2023).

  24. Fitzgerald, R. C. Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 55, 1810–1820 (2006).

    Google Scholar 

  25. Tobey, N. A., Carson, J. L., Alkiek, R. A. & Orlando, R. C. Dilated intercellular spaces: a morphological feature of acid reflux–damaged human esophageal epithelium. Gastroenterology 111, 1200–1205 (1996).

    Google Scholar 

  26. Souza, R. F. From reflux esophagitis to esophageal adenocarcinoma. Dig. Dis. 34, 483–490 (2016).

    Google Scholar 

  27. Masaoka, T. & Suzuki, H. Does bile reflux influence the progression of Barrett’s esophagus to adenocarcinoma? (Gastroenterology 2013;145:1300-1311). J. Neurogastroenterol. Motil. 20, 124–126 (2014).

    Google Scholar 

  28. Quante, M., Abrams, J. A., Lee, Y. & Wang, T. C. Barrett esophagus: what a mouse model can teach us about human disease. Cell Cycle 11, 4328–4338 (2012).

    Google Scholar 

  29. Prichard, D. O. et al. Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett’s oesophagus by modulating integrin-alphav trafficking. J. Cell Mol. Med 21, 3612–3625 (2017).

    Google Scholar 

  30. Morales, T. G. & Sampliner, R. E. Barrett’s esophagus: update on screening, surveillance, and treatment. Arch. Intern Med 159, 1411–1416 (1999).

    Google Scholar 

  31. Chen, Y. Y. et al. Significance of acid-mucin-positive nongoblet columnar cells in the distal esophagus and gastroesophageal junction. Hum. Pathol. 30, 1488–1495 (1999).

    Google Scholar 

  32. Goldblum, J. R. Barrett’s esophagus and Barrett’s-related dysplasia. Mod. Pathol. 16, 316–324 (2003).

    Google Scholar 

  33. Niv, Y. & Fass, R. The role of mucin in GERD and its complications. Nat. Rev. Gastroenterol. Hepatol. 9, 55–59 (2011).

    Google Scholar 

  34. Arul, G. S. et al. Mucin gene expression in Barrett’s oesophagus: an in situ hybridisation and immunohistochemical study. Gut 47, 753–761 (2000).

    Google Scholar 

  35. Warson, C. et al. Barrett’s esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Hum. Pathol. 33, 660–668 (2002).

    Google Scholar 

  36. Paterson, A. L., Gehrung, M., Fitzgerald, R. C. & O’Donovan, M. Role of TFF3 as an adjunct in the diagnosis of Barrett’s esophagus using a minimally invasive esophageal sampling device-the cytosponge(TM). Diagn. Cytopathol. 48, 253–264 (2020).

    Google Scholar 

  37. Dunn, L. J., Jankowski, J. A. & Griffin, S. M. Trefoil factor expression in a human model of the early stages of Barrett’s esophagus. Dig. Dis. Sci. 60, 1187–1194 (2015).

    Google Scholar 

  38. Clemons, N. J. et al. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1335–G1346 (2012).

    Google Scholar 

  39. Garman, K. S. Origin of Barrett’s epithelium: esophageal submucosal glands. Cell Mol. Gastroenterol. Hepatol. 4, 153–156 (2017).

    Google Scholar 

  40. Rhee, H. & Wang, D. H. Cellular origins of Barrett’s esophagus: the search continues. Curr. Gastroenterol. Rep. 20, 51 (2018).

    Google Scholar 

  41. Palles, C. et al. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett’s esophagus. Gastroenterology 148, 367–378 (2015).

    Google Scholar 

  42. Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat. Genet. 45, 1487–1493 (2013).

    Google Scholar 

  43. Martinez-Uribe, O., Becker, T. C. & Garman, K. S. Promises and limitations of current models for understanding Barrett’s esophagus and esophageal adenocarcinoma. Cell Mol. Gastroenterol. Hepatol. 17, 1025–1038 (2024).

    Google Scholar 

  44. Kapoor, H., Lohani, K. R., Lee, T. H., Agrawal, D. K. & Mittal, S. K. Animal models of Barrett’s esophagus and esophageal adenocarcinoma-past, present, and future. Clin. Transl. Sci. 8, 841–847 (2015).

    Google Scholar 

  45. Macke, R. A. et al. Barrett’s esophagus and animal models. Ann. N. Y. Acad. Sci. 1232, 392–400 (2011).

    Google Scholar 

  46. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    Google Scholar 

  47. Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Google Scholar 

  48. Garman, K. S. et al. Genetic Defect in Submucosal Gland-Associated Caveolin-3: A New Paradigm in Esophageal Adenocarcinoma Risk. Gastroenterology 165, 1561–1564.e3 (2023).

  49. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  51. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010).

    Google Scholar 

  52. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Google Scholar 

  53. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 201178 (2018).

  54. Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).

    Google Scholar 

  55. Karczewski, K. J. et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45, D840–D845 (2017).

    Google Scholar 

  56. Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).

    Google Scholar 

  57. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Google Scholar 

  58. Kruger, L. et al. Ductular and proliferative response of esophageal submucosal glands in a porcine model of esophageal injury and repair. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G180–G191 (2017).

    Google Scholar 

  59. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Google Scholar 

  60. Drovdlic, C. M. et al. Demographic and phenotypic features of 70 families segregating Barrett’s oesophagus and oesophageal adenocarcinoma. J. Med. Genet. 40, 651–656 (2003).

    Google Scholar 

  61. Kalabis, J. et al. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat. Protoc. 7, 235–246 (2012).

    Google Scholar 

  62. Ravillah, D. et al. Discovery and initial characterization of long intergenic noncoding RNAs associated with esophageal adenocarcinoma. Gastroenterology 165, 505–508.e507 (2023).

    Google Scholar 

  63. Fujioka, H., Tandler, B., Cohen, M., Koontz, D. & Hoppel, C. L. Multiple mitochondrial alterations in a case of myopathy. Ultrastruct. Pathol. 38, 204–210 (2014).

    Google Scholar 

  64. Fujioka, H. et al. Multiple muscle cell alterations in a case of encephalomyopathy. Ultrastruct. Pathol. 38, 13–25 (2014).

    Google Scholar 

  65. Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488.e410 (2017).

    Google Scholar 

  66. Zhang, Y. et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23, 516–529.e515 (2018).

    Google Scholar 

  67. Abbas, G., Pennathur, A., Keeley, S. B., Landreneau, R. J. & Luketich, J. D. Laser ablation therapies for Barrett’s esophagus. Semin Thorac. Cardiovasc. Surg. 17, 313–319 (2005).

    Google Scholar 

  68. Locke, G. R., Talley, N. J., Weaver, A. L. & Zinsmeister, A. R. A new questionnaire for gastroesophageal reflux disease. Mayo Clin. Proc. 69, 539–547 (1994).

    Google Scholar 

Download references

Acknowledgements

This research was supported by Public Health Service (PHS) awards: P01 CA269019 (A.C., K.S.G., S.G.G., J.E.W., and K.G.); Case GI SPORE P50 CA150964 (K.G.), P30 CA043703 (K.G.); R01 DK118022 (K.S.G.); P30 DK034987 (K.S.G.); P30 CA014236 (S.G.G.); P30 DK097948 (A.C.); U01 CA271867 (A.C. and J.E.W.); The DeGregorio Family Foundation (K.G.), Torrey Coast Foundation GEMINI Network (K.G.), and The Gastric Cancer Foundation (K.G.). This work was also supported by the Animal Resource Center, Transgenic and Targeting core, Tissue Resources Core at the Case Western Reserve University, Molecular Genomics Core at Duke University, and Duke’s BioRepository & Precision Pathology Center (BRPC). We are grateful to the patients who opt to participate in our research. We thank our co-author, late Dr. Fujioka, who passed away recently, for his expert advice and help with electron microscopy studies that served as the foundation for understanding the biology of VSIG10L. We thank late Dr. Nathan A. Berger at Case Western Reserve University, who passed away recently, for expert scientific guidance and advice during the conceptualization phase of this study. We thank late Ms. Anne Baskin at Case Western Reserve University, who also passed away recently, for her technical assistance in animal husbandry. We thank Ms. Lakshmeswari Ravi for her technical input on the experimental methodologies used in this study. We thank the clinical gastroenterology providers who collect research samples from enrolled participants under their clinical care, especially Dr. Rahul Shimpi and Dr. Michael Feiler, as well as the Gastroenterology Clinical Research Unit staff at Duke. We thank Thomas C. Becker for performing lab-based assays in the Garman Lab to support this project.

Author information

Authors and Affiliations

  1. Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA

    Durgadevi Ravillah, Ramachandra M. Katabathula, Bhavatharini Udhayakumar & Kishore Guda

  2. Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

    Salendra Singh

  3. Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA

    Adam M. Kresak, Joseph E. Willis & Kishore Guda

  4. Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA

    Rajesh Gupta, Wendy Brock, Amitabh Chak & Kishore Guda

  5. Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA

    Yosuke Mitani & Joel T. Gabre

  6. Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA

    Vaibhav Jain, Emily Hocke & Simon G. Gregory

  7. The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, USA

    Simon G. Gregory

  8. Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA

    Simon G. Gregory

  9. Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA

    Katherine S. Garman

  10. Cryo-Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA

    Hisashi Fujioka

  11. Division of Gastroenterology and Hepatology, Case Western Reserve University School of Medicine, Cleveland, OH, USA

    Amitabh Chak

Authors
  1. Durgadevi Ravillah
    View author publications

    Search author on:PubMed Google Scholar

  2. Salendra Singh
    View author publications

    Search author on:PubMed Google Scholar

  3. Ramachandra M. Katabathula
    View author publications

    Search author on:PubMed Google Scholar

  4. Adam M. Kresak
    View author publications

    Search author on:PubMed Google Scholar

  5. Bhavatharini Udhayakumar
    View author publications

    Search author on:PubMed Google Scholar

  6. Rajesh Gupta
    View author publications

    Search author on:PubMed Google Scholar

  7. Wendy Brock
    View author publications

    Search author on:PubMed Google Scholar

  8. Yosuke Mitani
    View author publications

    Search author on:PubMed Google Scholar

  9. Vaibhav Jain
    View author publications

    Search author on:PubMed Google Scholar

  10. Emily Hocke
    View author publications

    Search author on:PubMed Google Scholar

  11. Simon G. Gregory
    View author publications

    Search author on:PubMed Google Scholar

  12. Katherine S. Garman
    View author publications

    Search author on:PubMed Google Scholar

  13. Joel T. Gabre
    View author publications

    Search author on:PubMed Google Scholar

  14. Hisashi Fujioka
    View author publications

    Search author on:PubMed Google Scholar

  15. Joseph E. Willis
    View author publications

    Search author on:PubMed Google Scholar

  16. Amitabh Chak
    View author publications

    Search author on:PubMed Google Scholar

  17. Kishore Guda
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Study concept and design (D.R., A.C., and K.G.); Acquisition of data (D.R., A.M.K., B.U., R.G., W.B., Y.M., V.J., E.H., K.S.G., S.G.G., J.T.G., H.K., A.C., and K.G.); Analysis and interpretation of data (D.R., S.S., R.M.K., V.J., S.G.G., J.T.G., H.K., J.E.W., A.C., and K.G.); Drafting of the manuscript (D.R.); Critical revision of the manuscript (A.C. and K.G.); Statistical analysis (R.M.K.); Obtained funding (A.C. and K.G.); Administrative, technical, or material support (W.B., R.G., A.C., and K.G.); Study supervision (K.G.).

Corresponding author

Correspondence to Kishore Guda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravillah, D., Singh, S., Katabathula, R.M. et al. VSIG10L is a major determinant of esophageal homeostasis and inherited predisposition to Barrett’s esophagus. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68975-3

Download citation

  • Received: 12 May 2025

  • Accepted: 09 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68975-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer