Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Host microenvironment in potato–Phytophthora infestans interaction revealed by single-cell spatiotemporal transcriptome

Abstract

Late blight, caused by Phytophthora infestans (P. infestans), is one of the most destructive diseases in potato production. Yet, the interaction landscape between potato and the late blight pathogen at single-cell and spatial resolution remains elusive. Here we utilize Stereo-seq to present the spatiotemporal transcriptome atlas in potato leaves inoculated with P. infestans at single-cell resolution. We retrieve the major cell types of potato leaves, highlighting the coordination and specialization of immune responses among distinct cell types. We also conduct a comprehensive analysis to elucidate the multifaceted infection strategies employed by P. infestans to facilitate successful host colonization. Furthermore, we distinguish pathogen-targeted cells (PTCs) and surrounding PTC cells (SPCs) on the basis of pathogen distribution, thereby revealing the cellular and spatial heterogeneity of plant immune responses. Specifically, transcriptional profiling indicates that PTCs are mainly involved in cell wall reinforcement and regulation of redox homeostasis, whereas SPCs probably play a role in coordinating systemic immune signalling. Collectively, our findings elucidate a regulatory paradigm wherein PTCs and SPCs integrate with the cell-type-specific responses and dynamic expression patterns of P. infestans, orchestrating a complex and finely tuned host microenvironment during the interaction between potato and P. infestans. These findings provide a resource for advancing our understanding of the dynamic and heterogeneous nature of plant–pathogen interactions, offering novel insights to enhance crop disease resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatiotemporal transcriptomic atlas of potato leaves infected by P. infestans at single-cell resolution.
Fig. 2: Coordination and heterogeneity of cell-type expression patterns in response to P. infestans infection.
Fig. 3: Spatial and dynamic gene expression patterns associated with the P. infestans infection process.
Fig. 4: Spatiotemporal cellular responses in PTCs and SPCs.
Fig. 5: Intercellular spatial dynamic expression patterns across leaf tissue.

Similar content being viewed by others

Data availability

All datasets supporting the findings of this study are available in the main text or Extended Data. All raw sequence data are available in CNSA at https://db.cngb.org/data_resources/project/CNP0007678 (ref. 99). The biological materials used in this study are available from S.D. on reasonable request. Source data are provided with this paper.

Code availability

The codes related to analysis are available in GitHub at https://github.com/jkfo002/Potato-Phytophthora-Spatial-Alts (ref. 100).

References

  1. Haverkort, A. J. et al. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 51, 47–57 (2008).

    Article  Google Scholar 

  2. Kamoun, S. et al. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16, 413–434 (2015).

    Article  PubMed  Google Scholar 

  3. Fry, W. E. et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 105, 966–981 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Haverkort, A. J., Struik, P. C., Visser, R. G. F. & Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res. 52, 249–264 (2009).

    Article  Google Scholar 

  5. Hardham, A. R. Cell biology of plant–oomycete interactions. Cell Microbiol. 9, 31–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Boevink, P. C., Birch, P. R. J., Turnbull, D. & Whisson, S. C. Devastating intimacy: the cell biology of plant–Phytophthora interactions. New Phytol. 228, 445–458 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whisson, S. C., Boevink, P. C., Wang, S. & Birch, P. R. The cell biology of late blight disease. Curr. Opin. Microbiol. 34, 127–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, J., Moreno-Pérez, A. & Coaker, G. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun. Biol. 6, 814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faulkner, C. & Robatzek, S. Plants and pathogens: putting infection strategies and defence mechanisms on the map. Curr. Opin. Plant Biol. 15, 699–707 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 1447–1478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ngou, B. P. M., Jones, J. D. G. & Ding, P. Plant immune networks. Trends Plant Sci. 27, 255–273 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, J. D. G., Staskawicz, B. J. & Dangl, J. L. The plant immune system: from discovery to deployment. Cell 187, 2095–2116 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Li, X., Kapos, P. & Zhang, Y. NLRs in plants. Curr. Opin. Immunol. 32, 114–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Jones, J. D., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science https://doi.org/10.1126/science.aaf6395 (2016).

  18. Bigeard, J., Colcombet, J. & Hirt, H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8, 521–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Couto, D. & Zipfel, C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Monte, I. Jasmonates and salicylic acid: evolution of defense hormones in land plants. Curr. Opin. Plant Biol. 76, 102470 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Spoel, S. H. & Dong, X. Salicylic acid in plant immunity and beyond. Plant Cell 36, 1451–1464 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng, Y., Yang, J., Li, X. & Zhang, Y. Salicylic acid: biosynthesis and signaling. Annu. Rev. Plant Biol. 72, 761–791 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Coaker, G., Zhou, J. M. & Dong, X. Plant immune mechanisms: from reductionistic to holistic points of view. Mol. Plant 13, 1358–1378 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, X., Liu, Z. & Sun, X. Single-cell and spatial multi-omics in the plant sciences: technical advances, applications, and perspectives. Plant Commun. 4, 100508 (2023).

    Article  PubMed  Google Scholar 

  25. Zhu, J. et al. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delannoy, E. et al. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Plant Commun. 4, 100676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, B., Feng, L., Hulin, M. T., Ding, P. & Ma, W. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 31, 1732–1747.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature https://doi.org/10.1038/s41586-024-08383-z (2025).

  29. O’Connell, R. J. et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–1065 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fawke, S., Doumane, M. & Schornack, S. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79, 263–280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Giacomello, S. A new era for plant science: spatial single-cell transcriptomics. Curr. Opin. Plant Biol. 60, 102041 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Seyfferth, C. et al. Advances and opportunities in single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 72, 847–866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Depuydt, T., De Rybel, B. & Vandepoele, K. Charting plant gene functions in the multi-omics and single-cell era. Trends Plant Sci. 28, 283–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Cao, Y. et al. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol. J. 21, 1839–1859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, X. et al. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. Plant Cell Environ. 46, 2222–2237 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Birnbaum, K. D. Power in numbers: single-cell RNA-seq strategies to dissect complex tissues. Annu. Rev. Genet. 52, 203–221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Denyer, T. & Timmermans, M. C. P. Crafting a blueprint for single-cell RNA sequencing. Trends Plant Sci. 27, 92–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Xia, K. et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299–1310.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. Three-step biosynthesis of salicylic acid from benzoyl-CoA in plants. Nature https://doi.org/10.1038/s41586-025-09185-7 (2025).

  41. Anjali et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8, 100154 (2023).

    Article  Google Scholar 

  42. Vranová, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700 (2013).

    Article  PubMed  Google Scholar 

  43. Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kurt, F. An insight into Oligopeptide Transporter 3 (OPT3) family proteins. Protein Pept. Lett. 28, 43–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, Z. et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27, 2057–2072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sabbadin, F. et al. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 373, 774–779 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Turella, S. et al. Enzymatic oxidation of galacturonides from pectin breakdown contributes to stealth infection by Oomycota phytopathogens. Nat. Commun. 16, 3467 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kubicek, C. P., Starr, T. L. & Glass, N. L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52, 427–451 (2014).

    Article  PubMed  Google Scholar 

  49. Abrahamian, M., Ah-Fong, A. M., Davis, C., Andreeva, K. & Judelson, H. S. Gene expression and silencing studies in Phytophthora infestans reveal infection-specific nutrient transporters and a role for the nitrate reductase pathway in plant pathogenesis. PLoS Pathog. 12, e1006097 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fernandez, J., Marroquin-Guzman, M. & Wilson, R. A. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Annu. Rev. Phytopathol. 52, 155–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Birch, P. R. et al. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr. Opin. Plant Biol. 11, 373–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, S., McLellan, H., Boevink, P. C. & Birch, P. R. J. RxLR effectors: master modulators, modifiers and manipulators. Mol. Plant Microbe Interact. 36, 754–763 (2023).

    Article  PubMed  Google Scholar 

  53. Vleeshouwers, V. G. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, J. et al. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol. Plant 13, 1470–1484 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, R. H. & Tyler, B. M. Mechanisms and evolution of virulence in oomycetes. Annu. Rev. Phytopathol. 50, 295–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Kaschani, F. et al. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol. 154, 1794–1804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He, Q. et al. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proc. Natl Acad. Sci. USA 115, E7834–E7843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, H. et al. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell 35, 2504–2526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oliveira-Garcia, E. et al. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. Plant Cell 35, 2527–2551 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, H. et al. Filamentous pathogen effectors enter plant cells via endocytosis. Trends Plant Sci. 28, 1214–1217 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Petre, B. et al. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell 33, 1447–1471 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liang, Q., Solis Soto, L., Haymaker, C. & Chen, K. LSGI: interpretable spatial gradient analysis for spatial transcriptomics data. Genome Biol. 26, 238 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ringli, C., Keller, B. & Ryser, U. Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 58, 1430–1441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molina, A. et al. Plant cell wall-mediated disease resistance: current understanding and future perspectives. Mol. Plant 17, 699–724 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Javed, T. & Gao, S. J. WRKY transcription factors in plant defense. Trends Genet. 39, 787–801 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, Y. et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 1279–1290 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, L. et al. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. J. Exp. Bot. 72, 1473–1489 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Yazaki, K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 580, 1183–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Chai, L. X. et al. A putative nuclear copper chaperone promotes plant immunity in Arabidopsis. J. Exp. Bot. 71, 6684–6696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, H. Y. et al. Plasma membrane-localized plant immune receptor targets H+-ATPase for membrane depolarization to regulate cell death. New Phytol. 233, 934–947 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Zuluaga, A. P. et al. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 17, 29–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Bronkhorst, J. et al. An actin mechanostat ensures hyphal tip sharpness in Phytophthora infestans to achieve host penetration. Sci. Adv. 8, eabo0875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nobori, T. & Ecker, J. R. Yet uninfected? Resolving cell states of plants under pathogen attack. Cell Rep. Methods 3, 100538 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Choi, S. J., Lee, Z., Kim, S., Jeong, E. & Shim, J. S. Modulation of lignin biosynthesis for drought tolerance in plants. Front. Plant Sci. 14, 1116426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Muro-Villanueva, F., Mao, X. & Chapple, C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr. Opin. Biotechnol. 56, 202–208 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Xie, M. et al. Regulation of lignin biosynthesis and its role in growth–defense tradeoffs. Front. Plant Sci. 9, 1427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pinto, L., Soler-López, L., Serrano, A. & Sánchez-Rodríguez, C. Between host and invaders: the subcellular cell wall dynamics at the plant–pathogen interface. Annu. Rev. Plant Biol. 76, 255–284 (2025).

    Article  CAS  PubMed  Google Scholar 

  79. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, Z. et al. STOmicsDB: a comprehensive database for spatial transcriptomics data sharing, analysis and visualization. Nucleic Acids Res. 52, D1053–D1061 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, B. et al. Generating single-cell gene expression profiles for high-resolution spatial transcriptomics based on cell boundary images. GigaByte 2024, gigabyte110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Qiu, C. et al. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nat. Genet. 54, 328–341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).

    Article  PubMed  Google Scholar 

  93. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS  PubMed  Google Scholar 

  94. Frith, M. C., Li, M. C. & Weng, Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic Acids Res. 31, 3666–3668 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Conesa, A. & Gotz, S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008).

    Article  PubMed  Google Scholar 

  98. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, Y. et al. Single-cell spatiotemporal transcriptome atlas of potato-phytophthora infestans interaction. CNSA https://db.cngb.org/data_resources/project/CNP0007678 (2025).

  100. Dai, J. et al. Potato-Phytophthora spatiotemporal transcriptome. GitHub https://github.com/jkfo002/Potato-Phytophthora-Spatial-Alts (2025).

Download references

Acknowledgements

We thank S. Raffaele, T. Zhang, X. Yang, X. Guo, K. Ye, L. Wang, F. Zhang and H. Shu for project discussion and critical comments; Y. Xia, H. Qin, J. Chen and Q. Zhong for supporting cell segmentation and database construction. This work was supported by Guangdong Major Project of Basic and Applied Basic Research (2021B0301030004), the National Natural Science Foundation of China (32488302 and 32001601), the Joint Research Program of State Key Laboratory of Agricultural and Forestry Biosecurity (SKLJRP2506), the Guangdong Provincial Genomics Data Center (2021B1212100001) and the Guangdong Laboratory of Lingnan Morden Agriculture (AGIS-ZDXM202203).

Author information

Authors and Affiliations

Authors

Contributions

S.H. and S.D. conceived the project. S.H., S.D., Y.L. and J.D. designed the study. Y.L., J.D. and Z.D. performed data analyses. Y.L., J.D. and W.S. performed experiments. X.L., Y.C., X.X., T.Y., X.M. and L.K. gave technical support and conceptual advice. Y.L. and J.D. wrote the draft manuscript. Y.L., J.D., S.D. and S.H. revised the manuscript.

Corresponding authors

Correspondence to Sanwen Huang or Suomeng Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Doil Choi, Edouard Evangelisti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental design and Stereo-Seq at single-cell resolution.

a, Inoculation of potato leaves with P. infestans strain 88069td. Morphological observations of P. infestans at different developmental stages. c: cyst; gt: germ tube; a: appressorium; h: haustoria; m: mycelium. Scale bars presented in each time point. All images are representative of results repeated three times with similar results. b, Representative images showing fluorescent brightener (FB) staining of the plant cell walls (left panel) and Qubit ssDNA staining of oligonucleotide (right panel) on the chip to visualize cell-cell boundary. All images are representative of results repeated four times with similar results. c, Representative images showing single-cell segmentations based on the cell wall boundary and nucleus. Purple dots represent the corresponding leaf cells as showing in this paper. d, Statistics of cell numbers (left panel), gene counts (middle panel) and UMI (right panel) of each cell type. UEC, upper epidermal cell; PMC, palisade mesophyll cell; SMC, spongy mesophyll cell; LEC, lower epidermal cell; GC, guard cell; VC, vascular related cell. The box plots displaying the 25th to 75th percentiles, with a center line representing the median and whiskers extending to the minimum and maximum values within 1.5 times the interquartile range. The sample sizes for these box plots are provided in Supplementary Table 6. e, Spatial visualization of all leaf samples at four time points classified by cell type. Each dot represented a segmented cell and the color indicated cell type.

Extended Data Fig. 2 Spatiotemporal transcriptomic atlas of mock-treated potato leaves.

a, Spatial visualization of representative marker genes from each cell type of mock-treated sample. Scale bar, 100 μm. b, Dot plots showing the expression of selected marker genes for each cell type. The dot size suggests the percentage of cells expressing the corresponding marker genes, color intensity indicates the relative expression level. c, The UMAP visualization of the unsupervised clustering results for cells from mock-treated sample, each dot represented a segmented cell and the color indicated the cell type. d, Recall and precision rates of cell type segmentation. UEC, upper epidermal cell; PMC, palisade mesophyll cell; SMC, spongy mesophyll cell; LEC, lower epidermal cell; VC, vascular related cell; GC, guard cell.

Extended Data Fig. 3 Spatiotemporal transcriptomic atlas of all samples.

a, The UMAP visualization (upper panel) and spatial visualization (lower panel) of the unsupervised clustering results for cells from each separated time point, each dot represented a segmented cell and the color indicated cluster identity. b, Statistics of UMI (left panel) and gene counts (right panel) of each cluster. The box plots displaying the 25th to 75th percentiles, with a center line representing the median and whiskers extending to the minimum and maximum values within 1.5 times the interquartile range. The sample sizes for these box plots are provided in Supplementary Table 6. c, Spatial visualization of clusters showcasing the align with experimental design. Clusters were labeled as infected or non-infected based on their location within the actual P. infestans zoospore droplet-treated area. Each dot represented a segmented cell, with red, blue and green colors indicating clusters from inoculated, non-inoculated and mock regions, respectively. d, Statistics of cell number in each cluster. e, UMAP visualization presenting the clusters categorized as Inoculated, Non-inoculated and Mock-treated parts (left panel) and cell types (right panel). Each dot represented a segmented cell, red color: Inoculated cells; blue color: Non-inoculated cells; green: Mock-treated cells.

Extended Data Fig. 4 Coordination gene expression patterns responding to pathogen infection in potato leaf.

a, Bubble plot showing the enriched GO terms of the commonly upregulated (left panel) and down-regulated (right panel) genes across different cell types. The size of bubble represents the counts of genes within indicated GO terms, and the color indicated the P value adjusted with Benjamini-Hochberg method. Enrichment of GO terms were assessed using two-tailed Fisher’s exact test implemented in the clusterProfiler package. b, c, Line graph (b) and spatial visualization (c) showing the representative commonly up and down-regulated genes across different cell types. Scale bar, 100 μm. SMC, spongy mesophyll cell; UEC, upper epidermal cell; LEC, lower epidermal cell; VC, vascular related cell; PMC, palisade mesophyll cell.

Extended Data Fig. 5 Coordination gene expression patterns across all major cell types.

a, b, Line graph (a) and spatial visualization (b) showing the representative genes expression pattern across different cell types. Scale bar, 100 μm. SMC, spongy mesophyll cell; UEC, upper epidermal cell; LEC, lower epidermal cell; VC, vascular related cell; PMC, palisade mesophyll cell.

Extended Data Fig. 6 Spatial visualization of the expression patterns of P. infestans gene modules.

Spatial visualization of the expression patterns of the GHs and AAs (a), transporters (b), RxLRs and other pathogenic factors (c). Scale bar, 100 μm. GH: Glycoside Hydrolase; AA: Auxiliary Activity; RxLR: Arg-X-Leu-Arg effector.

Extended Data Fig. 7 Representative gene expression profiles associated with PTCs.

a, The images showing the NMF factors across potato leaf cells at each time point. Arrows indicate the direction of the gradients, and the color intensity in the cells reflects the loading values of the NMF factors, corresponding to the levels of gene expression in individual cells. Representative enlarged images are shown in Fig. 4c. b, Spatial visualization showing the representative genes expression pattern across infected potato leaves. The right side of the leaf indicated the inoculated side. Scale bar, 100 μm. c, The scatterplot showcasing the pseudo-temporal expression pattern of representative genes, with smooth expression curve represented by the red line.

Extended Data Fig. 8 Spatial dynamic profiles of representative clusters in potato leaves at 6hpi.

a, Neighborhood enrichment analysis between PTCs and cell clusters in spatial coordinates. Colors indicated the enrich scores. b, Heat map showing Pearson correlation coefficients between PTCs and cell clusters. The hierarchical clustering results shows in the top. c, Slingshot showing the pseudotime trajectories of the representative clusters. Each dot represented a segmented cell and colored based on clusters. d, Pseudotime trajectory analysis of representative clusters at 6 hpi. Cells are colored by pseudotime or cell type. UEC, upper epidermal cell; SMC, spongy mesophyll cell; PMC, palisade mesophyll cell; LEC, lower epidermal cell; GC, guard cell. e, Box plot showing immune scores of all major cell clusters. Colors of the box indicate the different cell clusters. The box plots displaying the 25th to 75th percentiles, with a center line representing the median and whiskers extending to the minimum and maximum values within 1.5 times the interquartile range. The sample sizes for these box plots are provided in Supplementary Table 6.

Extended Data Fig. 9 Dynamic changes of gene expression pattern across potato leaves.

a, Scatter plot showing the expression patterns of StPR1, StBCB, StWRKY41, StWRKY70, StLHCA, and StLHCB at 6hpi. b, Upset plot showing a comparison of genes in two adjacent gene clusters at 6hpi related to (Fig. 5e). c, Venn diagram showing overlapping DEGs between induced expressed genes and TFs in the middle stage of the pseudotime trajectory at 6hpi. d, Scatter plot displaying the correlated expression of StWRKY75 with representative regulated genes. Cells are colored based on clusters.

Extended Data Fig. 10 StWRKY75 is induced in host microenvironment of potato leaves and contributes to resistance by modulating multi-layered pathway.

a, The representative images showing spatial visualization of StWRKY75. The white dotted lines represent the boundary between the inoculated and the non-inoculated regions as defined by the spatial distribution of zoospore droplets. Scale bar, 100 μm. b, Box plot showing the expression level of StWRKY75 in Mock, PTCs and SPCs. Pairwise comparisons within each time point were performed using two-tailed Mann-Whitney U test (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001). c, d, Transcript levels of StWRKY75-RNAi (c) and overexpression plants (d) were measured by RT-qPCR and normalized with endogenous StELF1. Bars represent the mean ± s.d. (n = 3 biological replicates). The asterisks indicate significant differences as assessed by one-way ANOVA (with Tukey’s test) (****P < 0.0001). e, f, Relative biomass of P. infestans was determined by qPCR of P. infestans genomic DNA normalized to potato genomic DNA at 4 dpi. Bars represent the mean ± s.d. (n = 3 biological replicates). The asterisks indicate significant differences as assessed by one-way ANOVA (with Tukey’s test) (***P < 0.001, ****P < 0.0001). This experiment was repeated three times with similar results. g, h, P. infestans infection assay on StWRKY75-RNAi (g) and overexpression plants (h). Plants were photographed at 4 dpi. Scale bar, 1.5 cm. i, Volcano plot depicting the DEGs resulting from the overexpression of StWRKY75 compared with WT. j, Bulk RNA-seq of Desiree WT and StWRKY75 overexpression plants treated with water (Mock) or P. infestans strain 88069 at 12 hpi. DEGs (adjusted P < 0.05, |log2-adjusted fold change| > 1) between Desiree WT and StWRKY75 overexpression after infection are shown. k, Transcript levels of indicate genes were measured by RT-qPCR and normalized with endogenous StELF1. Bars represent the mean ± s.d. (n = 3 biological replicates). The asterisks indicate significant differences as assessed by one-way ANOVA (with Tukey’s test) (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In bf and k, exact P values are shown in source data with 95% confidence intervals. In i and j, Adjusted P value (Benjamini-Hochberg method) was calculated with two-tailed Wald test implement in DESeq2 package.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Reporting Summary

Supplementary Table 1

Lists of cell type-specific expressed marker genes or cluster-specific expressed marker genes.

Supplementary Table 2

Gene lists and GO term analysis for coordinated and heterogeneous cell-type expression patterns.

Supplementary Table 3

Lists of genes for dynamic expression of P. infestans or host vesicle trafficking and CME.

Supplementary Table 4

Lists of genes for dynamic expression in PTCs and SPCs.

Supplementary Table 5

Lists of genes for intercellular spatial expression patterns across leaf tissue.

Supplementary Table 6

The cell counting used in this study.

Supplementary Table 7

Primers used in this study.

Source data

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dai, J., Dong, Z. et al. Host microenvironment in potato–Phytophthora infestans interaction revealed by single-cell spatiotemporal transcriptome. Nat. Plants 12, 241–257 (2026). https://doi.org/10.1038/s41477-025-02181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02181-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing