Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmed mitophagy at the oocyte-to-zygote transition promotes lineage endurance

Abstract

The quality of mitochondria inherited from the oocyte determines embryonic viability, lifelong metabolic health of the progeny and lineage endurance. High levels of endogenous reactive oxygen species and exogenous toxicants pose threats to mitochondrial DNA (mtDNA) in fully developed oocytes. Deleterious mtDNA is commonly detected in mature oocytes, but is absent in embryos, suggesting the existence of a cryptic purifying selection mechanism. Here, we discover that in Caenorhabditiselegans, the onset of oocyte-to-zygote transition developmentally triggers a rapid mitophagy event. We show that mitophagy at oocyte-to-zygote transition (MOZT) requires mitochondrial fragmentation, the macroautophagy pathway and the mitophagy receptor FUNDC1, but not the prevalent mitophagy factors PINK1 and BNIP3. MOZT reduces the transmission of deleterious mtDNA and as a result, protects embryonic survival. Impaired MOZT drives the increased accumulation of mtDNA mutations across generations, leading to the extinction of descendant populations. Thus, MOZT represents a strategy that preserves mitochondrial health during the mother-to-offspring transmission and safeguards lineage continuity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial reduction during the C.elegans oocyte-to-zygote transition.
Fig. 2: Macroautophagy activation is required for mitochondrial degradation during OZT.
Fig. 3: DRP-1 mediated mitochondrial fragmentation is necessary for MOZT.
Fig. 4: FUNDC1 is required for mitophagy and mitochondrial fragmentation during OZT.
Fig. 5: FUNDC1 puncta localize at sites of mitochondrial fragmentation during OZT.
Fig. 6: MOZT executes purifying selection against uaDf5 during OZT, preventing accumulation of mutant mtDNA and population collapse over generations.
Fig. 7: Loss of MOZT renders fertility and progeny survival susceptible to mtDNA heteroplasmy through a maternal effect.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the main text, extended data figures and supplementary materials. Uncropped versions of confocal images supporting main figures are displayed in Supplementary Fig. 6. C.elegans strains used in this study are listed in Supplementary Table 1. Oligonucleotides used in the study are listed in Supplementary Table 2. All stable reagents generated in this study are available from the lead contact without restriction, upon request. Requests for further information and resources should be directed to and will be fulfilled by the lead contact, D.R.S. (david.sherwood@duke.edu). Source data are provided with this paper.

Code availability

No custom code was developed or used in this study.

References

  1. Johnston, I. G. & Williams, B. P. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst. 2, 101–111 (2016).

    Article  PubMed  Google Scholar 

  2. Thouas, G. A., Trounson, A. O., Wolvetang, E. J. & Jones, G. M. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol. Reprod. 71, 1936–1942 (2004).

    Article  PubMed  Google Scholar 

  3. Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tesarik, J. & Mendoza-Tesarik, R. Mitochondria in human fertility and infertility. Int. J. Mol. Sci. 24, 8950 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andreas, E., Reid, M., Zhang, W. & Moley, K. H. The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Mol. Hum. Reprod. 25, 717–728 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malott, K. F. & Luderer, U. Toxicant effects on mammalian oocyte mitochondria. Biol. Reprod. 104, 784–793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Otten, A. B. C. et al. Replication errors made during oogenesis lead to detectable de novo mtDNA mutations in zebrafish oocytes with a low mtDNA copy number. Genetics 204, 1423–1431 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Denver, D. R., Morris, K., Lynch, M., Vassilieva, L. L. & Thomas, W. K. High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289, 2342–2344 (2000).

    Article  PubMed  Google Scholar 

  9. Fu, Y., Tigano, M. & Sfeir, A. Safeguarding mitochondrial genomes in higher eukaryotes. Nat. Struct. Mol. Biol. 27, 687–695 (2020).

    Article  PubMed  Google Scholar 

  10. Howe, D. K. & Denver, D. R. Muller’s Ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution. BMC Evol. Biol. 8, 62 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Muller, H. J. The relation of recombination to mutational advance. Mutation Res. 1, 2–9 (1964).

    Article  Google Scholar 

  12. Guo, Y. et al. Very low-level heteroplasmy mtDNA variations are inherited in humans. J. Genet. Genom. 40, 607–615 (2013).

    Article  Google Scholar 

  13. Schwartz, A. Z. A., Tsyba, N., Abdu, Y., Patel, M. R. & Nance, J. Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. eLife 11, e80396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lieber, T., Jeedigunta, S. P., Palozzi, J. M., Lehmann, R. & Hurd, T. R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Palozzi, J. M. et al. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab. 34, 1809–1823.e1806 (2022).

    Article  PubMed  Google Scholar 

  16. Zhang, Y. et al. PINK1 inhibits local protein synthesis to limit transmission of deleterious mitochondrial DNA mutations. Mol. Cell 73, 1127–1137.e1125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hill, J. H., Chen, Z. & Xu, H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 46, 389–392 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flowers, S. et al. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 12, e79725 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wai, T. et al. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52–62 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Charmpilas, N. & Tavernarakis, N. Mitochondrial maturation drives germline stem cell differentiation in Caenorhabditis elegans. Cell Death Diff. 27, 601–617 (2020).

    Article  Google Scholar 

  21. Lee, S. K. et al. The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential. J. Reprod. Dev. 60, 128–135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ge, H. et al. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol. Reprod. Dev. 79, 392–401 (2012).

    Article  PubMed  Google Scholar 

  23. Braeckman, B. P., Smolders, A., Back, P. & De Henau, S. In vivo detection of reactive oxygen species and redox status in Caenorhabditis elegans. Antioxid. Redox Signal. 25, 577–592 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Fanti, S. et al. Intra-individual purifying selection on mitochondrial DNA variants during human oogenesis. Hum. Reprod. 32, 1100–1107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krakauer, D. C. & Mira, A. Mitochondria and germ-cell death. Nature 400, 125–126 (1999).

    Article  PubMed  Google Scholar 

  26. Perez, G. I., Trbovich, A. M., Gosden, R. G. & Tilly, J. L. Mitochondria and the death of oocytes. Nature 403, 500–501 (2000).

    Article  PubMed  Google Scholar 

  27. Chan, C. C. W. et al. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol. Hum. Reprod. 11, 843–846 (2006).

    Article  Google Scholar 

  28. Gibson, T. C., Kubisch, H. M. & Brenner, C. A. Mitochondrial DNA deletions in rhesus macaque oocytes and embryos. Mol. Hum. Reprod. 11, 785–789 (2005).

    Article  PubMed  Google Scholar 

  29. Ma, H. et al. Deleterious mtDNA mutations are common in mature oocytes. Biol. Reprod. 102, 607–619 (2019).

    Article  PubMed Central  Google Scholar 

  30. Brenner, C. A. et al. Mitochondrial DNA deletion in human oocytes and embryos. Mol. Hum. Reprod. 4, 887–892 (1998).

    Article  PubMed  Google Scholar 

  31. Monnot, S. et al. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. Hum. Mol. Genet. 22, 1867–1872 (2013).

    Article  PubMed  Google Scholar 

  32. Barritt, J. A., Brenner, C. A., Cohen, J. & Matt, D. W. Mitochondrial DNA rearrangements in human oocytes and embryos. Mol. Hum. Reprod. 5, 927–933 (1999).

    Article  PubMed  Google Scholar 

  33. Kremer, L. S. et al. A role for BCL2L13 and autophagy in germline purifying selection of mtDNA. PLoS Genet. 19, e1010573 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gitschlag, B. L., Tate, A. T. & Patel, M. R. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. eLife 9, e56686 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  PubMed  Google Scholar 

  36. McCarter, J., Bartlett, B., Dang, T. & Schedl, T. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev. Biol. 205, 111–128 (1999).

    Article  PubMed  Google Scholar 

  37. Stoeckius, M. et al. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 33, 1751–1766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahringer, J., Rosenquist, T. A., Lawson, D. N. & Kimble, J. The Caenorhabditis elegans sex determining gene fem-3 is regulated post-transcriptionally. EMBO J. 11, 2303–2310 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bohnert, K. A. & Kenyon, C. A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 551, 629–633 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 24, 382–400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tzur, Y. B. et al. Spatiotemporal gene expression analysis of the Caenorhabditis elegans germline uncovers a syncytial expression switch. Genetics 210, 587–605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).

    Article  PubMed  Google Scholar 

  43. Shang, A., Shao, S., Zhao, L. & Liu, B. Far-red fluorescent proteins: tools for advancing in vivo imaging. Biosensors 14, 359 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mitra, K. & Lippincott-Schwartz, J. Analysis of mitochondrial dynamics and functions using imaging approaches. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb0425s46 (2010).

  46. Wang, S. et al. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 8, 304 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lim, Y. et al. Fndc-1 contributes to paternal mitochondria elimination in C. elegans. Dev. Biol. 454, 15–20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chatel-Chaix, L. et al. Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20, 342–356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Das, R. & Chakrabarti, O. Mitochondrial hyperfusion: a friend or a foe. Biochem. Soc. Trans. 48, 631–644 (2020).

    Article  PubMed  Google Scholar 

  51. Lim, Y. et al. FNDC-1-mediated mitophagy and ATFS-1 coordinate to protect against hypoxia-reoxygenation. Autophagy 17, 3389–3401 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dilberger, B. et al. Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxidative Med. Cell. Longev. 2019, 6840540 (2019).

    Article  Google Scholar 

  53. Terada, H. Uncouplers of oxidative phosphorylation. Environ. Health Perspect. 87, 213–218 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hua, X., Liang, G., Chao, J. & Wang, D. Exposure to 6-PPD quinone causes damage on mitochondrial complex I/II associated with lifespan reduction in Caenorhabditis elegans. J. Hazard. Mater. 472, 134598 (2024).

    Article  PubMed  Google Scholar 

  55. Bess, A. S., Crocker, T. L., Ryde, I. T. & Meyer, J. N. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res. 40, 7916–7931 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, W. & Wu, F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod. Biol. Endocrinol. 21, 27 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leuthner, T. essC. et al. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res. 50, 8626–8642 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meshnik, L. et al. Mutant C. elegans mitofusin leads to selective removal of mtDNA heteroplasmic deletions across generations to maintain fitness. BMC Biol. 20, 40 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin, Y.-F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416–419 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liau, W. S., Gonzalez-Serricchio, A. S., Deshommes, C., Chin, K. & LaMunyon, C. W. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans. BMC Genet. 8, 8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rodríguez-Nuevo, A. et al. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature 607, 756–761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim, K., Kenigsberg, S., Jurisicova, A. & Bentov, Y. The role of mitochondria in oocyte and early embryo health. OBM Genet. 03, 070 (2019).

    Article  Google Scholar 

  63. Spikings, E. C., Alderson, J. & John, J. C. S. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335 (2007).

    Article  PubMed  Google Scholar 

  64. Han, L. et al. Increased mtDNA mutation frequency in oocytes causes epigenetic alterations and embryonic defects. Natl Sci. Rev. 9, nwac136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Field, J. T. & Gordon, J. W. BNIP3 and Nix: atypical regulators of cell fate. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119325 (2022).

    Article  PubMed  Google Scholar 

  66. Ren, J. et al. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci. Adv. 6, eabc8561 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Samuel, A. D. T., Murthy, V. N. & Hengartner, M. O. Calcium dynamics during fertilization in C. elegans. BMC Dev. Biol. 1, 8 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kurihara, Y. et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 287, 3265–3272 (2012).

    Article  PubMed  Google Scholar 

  69. Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn’t kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389–396 (2011).

    Article  PubMed  Google Scholar 

  70. Cagnone, G. L. et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci. Rep. 6, 23229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chiaratti, M. R. & Meirelles, F. V. Mitochondrial DNA copy number, a marker of viability for oocytes. Biol. Reprod. 83, 1–2 (2010).

    Article  PubMed  Google Scholar 

  72. Tsang, W. Y. & Lemire, B. D. Mitochondrial genome content is regulated during nematode development. Biochem. Biophys. Res. Commun. 291, 8–16 (2002).

    Article  PubMed  Google Scholar 

  73. Hsieh, R.-H. et al. Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes. Fert. Steril. 77, 1012–1017 (2002).

    Article  Google Scholar 

  74. Ru, Y. et al. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. Nat. Aging 4, 1211–1230 (2024).

    Article  PubMed  Google Scholar 

  75. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang, H. et al. Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission. Sci. Adv. 7, eabi5657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501, 412–415 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hahn, A. et al. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab. 36, 2528–2541.e2511 (2024).

    Article  PubMed  Google Scholar 

  79. Otten, A. B. C. et al. Differences in strength and timing of the mtDNA bottleneck between zebrafish germline and non-germline cells. Cell Rep. 16, 622–630 (2016).

    Article  PubMed  Google Scholar 

  80. Cao, L. et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–390 (2007).

    Article  PubMed  Google Scholar 

  81. Zhang, Y. et al. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. Nat. Aging 3, 1372–1386 (2023).

    Article  PubMed  Google Scholar 

  82. Xu, G. et al. Expression pattern and functional analysis of fundc1 in rare minnow (Gobiocypris rarus). Gene 626, 149–157 (2017).

    Article  PubMed  Google Scholar 

  83. Xu, G. et al. Fundc1 is necessary for proper body axis formation during embryogenesis in zebrafish. Sci. Rep. 9, 18910 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kronja, I. et al. Quantitative proteomics reveals the dynamics of protein changes during Drosophila oocyte maturation and the oocyte-to-embryo transition. Proc. Natl Acad. Sci. USA 111, 16023–16028 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dickinson, D. J., Ward, J. D., Reiner, D. J. & Goldstein, B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 10, 1028–1034 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fang, J. et al. Ribo-On and Ribo-Off tools using a self-cleaving ribozyme allow manipulation of endogenous gene expression in C. elegans. Commun. Biol. 6, 816 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Raiders, S. A., Eastwood, M. D., Bacher, M. & Priess, J. R. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genet. 14, e1007417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Poteryaev, D., Squirrell, J. M., Campbell, J. M., White, J. G. & Spang, A. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol. Biol. Cell 16, 2139–2153 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stavoe, A. K. H. et al. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev. Cell 38, 171–185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sämann, J. et al. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem. 284, 16482–16491 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mirza, Z., Walhout, A. J. M. & Ambros, V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep. 42, 113189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tsang, W. Y. & Lemire, B. D. Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem. Cell Biol. 80, 645–654 (2002).

    Article  PubMed  Google Scholar 

  95. Kelley, L. C. et al. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat. Protoc. 12, 2081–2096 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Walston, T. & Hardin, J. An agar mount for observation of Caenorhabditis elegans embryos. Cold Spring Harb. Protoc. 2010, pdb.prot5540 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wolke, U., Jezuit, E. A. & Priess, J. R. Actin-dependent cytoplasmic streaming in C. elegans oogenesis. Development 134, 2227–2236 (2007).

    Article  PubMed  Google Scholar 

  98. Burdet, V. et al. Ultrastructure Expansion Microscopy applied to C. elegans embryos. MicroPubl. Biol. https://doi.org/10.17912/micropub.biology.001033 (2024).

  99. da Rosa, J. et al. Optimizing dsRNA engineering strategies and production in E. coli HT115 (DE3). J. Ind. Microbiol. Biotechnol. 51, kuae028 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  PubMed  Google Scholar 

  101. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lowry, J. et al. High-throughput cloning of temperature-sensitive Caenorhabditis elegans mutants with adult syncytial germline membrane architecture defects. G3 5, 2241–2255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fu, H. et al. Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling. Nat. Commun. 11, 1050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kolli, S., Kline, C. J., Rad, K. M. & Wehman, A. M. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. PLoS ONE 19, e0306435 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Njume, F. N. et al. A lipid transfer protein ensures nematode cuticular impermeability. iScience 25, 105357 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez, M. E. et al. Targeting of mitochondria by 10-N-alkyl acridine orange analogues: role of alkyl chain length in determining cellular uptake and localization. Mitochondrion 8, 237–246 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ashley, N., Harris, D. & Poulton, J. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp. Cell. Res. 303, 432–446 (2005).

    Article  PubMed  Google Scholar 

  108. Hemel, I. M. G. M., Engelen, B. P. H., Luber, N. & Gerards, M. A hitchhiker’s guide to mitochondrial quantification. Mitochondrion 59, 216–224 (2021).

    Article  PubMed  Google Scholar 

  109. Soh, A. W. J. et al. On-demand delivery of fibulin-1 protects the basement membrane during cyclic stretching in C. elegans. Dev. Cell https://doi.org/10.1016/j.devcel.2025.07.015 (2025).

  110. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  PubMed  Google Scholar 

  111. Hughes, S. E., Huang, C. & Kornfeld, K. Identification of mutations that delay somatic or reproductive aging of Caenorhabditis elegans. Genetics 189, 341–356 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Luo, S., Kleemann, G. A., Ashraf, J. M., Shaw, W. M. & Murphy, C. T. TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143, 299–312 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Montava-Garriga, L., Singh, F., Ball, G. & Ganley, I. G. Semi-automated quantitation of mitophagy in cells and tissues. Mech. Ageing Dev. 185, 111196 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Fan, X. et al. SapTrap assembly of Caenorhabditis elegans MosSCI transgene vectors. G3 10, 635–644 (2020).

    Article  PubMed  Google Scholar 

  115. Schärer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Crowley, L. C., Christensen, M. E. & Waterhouse, N. J. Measuring mitochondrial transmembrane potential by TMRE staining. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot087361 (2016).

  117. Boyd, W. A., Smith, M. V. & Freedman, J. H. in Developmental Toxicology: Methods Protocols (eds. Harris, C. & Hansen, J. M.) 15–24 (Humana Press, 2012).

  118. Taylor, S. K. B. et al. C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways. Sci. Rep. 11, 3115 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Srivastava, V. & Gross, E. Detection of mitophagy in Caenorhabditis elegans and mammalian cells using organelle-specific dyes. J. Vis. Exp. https://doi.org/10.3791/65337 (2023).

  120. Leuthner, T. C., Hartman, J. H., Ryde, I. T. & Meyer, J. N. in Mitochondrial Regulation: Methods and Protocols (eds. C. M. Palmeira & A. P. Rolo) 91–111 (Springer US, 2021).

  121. Longhini, K. M. & Glotzer, M. Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation. eLife 11, e83992 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. d’Humières, J., Wang, L., Sherwood, D. R. & Plastino, J. The actin protrusion deforms the nucleus during invasion through basement membrane. Preprint at bioRxivhttps://doi.org/10.1101/2025.03.13.643012 (2025).

  123. Norris, A. D., Kim, H. M., Colaiácovo, M. P. & Calarco, J. A. Efficient genome editing in Caenorhabditis elegans with a toolkit of dual-marker selection cassettes. Genetics 201, 449–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rieckher, M. & Tavernarakis, N. Caenorhabditis elegans microinjection. Bio. Protoc. 7, e2565 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kelly, W. G. & Fire, A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456 (1998).

    Article  PubMed  Google Scholar 

  126. Chen, S. & Phillips, C. M. Silencing of a NRDE-3 transgene in C. elegans germ cells and early embryos is mediated by the RNAi pathway. MicroPubl. Biol. https://doi.org/10.17912/micropub.biology.001308 (2024).

  127. Luz, A. L., Smith, L. L., Rooney, J. P. & Meyer, J. N. Seahorse Xfe 24 extracellular flux analyzer-based analysis of cellular respiration in Caenorhabditis elegans. Curr. Protoc. Toxicol. 66, 25.27.21–25.27.15 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratories of D.R.S. and J.M. for helpful discussions, A.W.J. Soh and L.P. Basta for reading and editing the manuscript and L. Yang for help with statistics and maintaining worm strains. FT2296, WEH722 and PHX5270 strains were provided as gifts by J. Nance (Univ. Wisconsin-Madison), A. M. Wehman (Univ. Denver) and P. Laurent (Univ. Libre de Bruxelles). We also thank L. Jameson for technical help with mitochondrial toxicants. This work was supported by R35GM118049 to D.R.S. and P42ES010356 and T32ES021432 to J.M. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.B.T. conceived the project, designed the study, performed most of the experiments, analysed the data, wrote the manuscript and prepared the figures. I.R. performed the qPCRs for measurement of uaDf5 ratios. S.B. helped with uaDf5 and UV exposure experiments under the supervision of J.M. K.M. performed measurements of mitochondrial respiration in MA lines and analysed the data under the supervision of J.M. Q.C. and I.K. helped construct molecular biology tools for the project. D.R.S. supervised the project, edited the manuscript and acquired funding.

Corresponding author

Correspondence to David R. Sherwood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reduction in mtDNA nucleoids during the C. elegans oocyte-to-zygote transition.

a, Confocal fluorescence image of mitochondria during C. elegans OZT. Mitochondria are labelled using Nonyl acridine orange (NAO), a green fluorescent mitochondrial dye. Left: The blue box indicates the –2 oocyte and the pink box the zygote. Right: The –2 oocyte and zygote enclosed in boxed regions are magnified. Scale bars, 10 µm. b, Total fluorescence intensity of NAO in –2 oocytes and zygotes. The data represent the mean ± s.d. (n = 25 animals) from three biological replicates. P value using a two-tailed Mann–Whitney test. c, Top: Confocal fluorescence images of mitochondrial DNA nucleoids (HMG-5::GFP11) during C. elegans OZT. Germlines and zygotes were extruded prior to imaging to improve nucleoid visualization. Scale bars, 10 µm. Middle: Object map overlays depicting mtDNA nucleoid distribution shown in upper panels. Bottom: Boxed regions in upper panels are magnified. Scale bar, 5 µm. d, Total fluorescence intensity of HMG-5::GFP11 in –2 oocytes and zygotes. The data represent the mean ± s.d. (n = 17 animals) from three biological replicates. P value using a two-tailed paired Student’s t-tests. e, Quantification of mtDNA nucleoid number (HMG-5::GFP11) per µm3 compared between –2 oocytes and zygotes. Data represent mean ± s.d. (n = 25 extruded germlines and zygotes) from three biological replicates. P value using a two-tailed paired Student’s t-test. f, Top: Confocal fluorescence images of mitochondrial DNA nucleoids visualized by PicoGreen staining during C. elegans OZT. Scale bars, 10 µm. Middle: Object map depictions of mtDNA nucleoid distribution shown in upper panels. Bottom: Boxed regions in upper panels are magnified. Scale bar, 5 µm. g, Quantification of mtDNA nucleoid number (PicoGreen-positive foci) compared between –2 oocytes and zygotes. Data represent mean ± s.d. (n = 15 animals) from three biological replicates. P value using a two-tailed paired Student’s t-test.

Source data

Extended Data Fig. 2 Mitochondrial reduction during OZT is developmentally programmed and induced by sperm signalling.

a, Time-lapse images showing changes in mitochondrial abundance over 40 min in –1 oocytes of a hermaphrodite vs a feminized animal. Fluorescence images show mitochondrial reduction in the –1 oocyte during the transition to the zygote in the hermaphrodite (top), compared to unchanged mitochondrial abundance in an arrested –1 oocyte in a feminized animal (bottom). b, Quantification of mitochondrial reduction from the –2 to –1 oocyte in hermaphrodites versus feminized animals. Data represents the ratio of total NDUV-2::mNG fluorescence intensity in –1 oocytes to that in –2 oocytes, compared between hermaphrodites and feminized animals. The mean ± s.d. is displayed for n = 30 animals each condition from three biological replicates. P value using a two-tailed Student’s t-test. c-e, Changes to mitochondrial volume during the hermaphrodite –2 oocyte transitioning to the –1 oocyte (c), during hermaphrodite OZT (d), and in the –1 oocyte of feminized animals (e). Mitochondrial volume at each time point is normalized to mitochondrial volume at t = 0. The data represent six independent experiments for each condition. P values using a Kruskal–Wallis test followed by a Dunn’s multiple comparisons test. f, Fluorescence images of mitochondria (NDUV-2::mNG) in oocytes of a hermaphrodite and a feminized animal. Green boxes indicate -3 oocytes, blue boxes –2 oocytes, and purple boxes –1 oocytes. Oocytes enclosed in boxed regions are magnified. Yellow arrows indicate donut-shaped mitochondria. Scale bars, 10 µm. Right: Data represent mean ± s.d. proportions (n = 30 animals per condition) from four biological replicates. Refer to Supplementary Fig. 1 for detailed mitochondrial morphology analysis.

Source data

Extended Data Fig. 3 Upregulation of the autophagy-lysosome system during the C. elegans oocyte-to-zygote transition.

a, Endogenous ATG-9::GFP distribution in a –2 oocyte and a –1 oocyte. Scale bar, 10 µm. b, Confocal fluorescence images of autophagosomes visualized by germline-specific LC3 protein marker (mCherry::LGG-2) in a –2 oocyte and –1 oocyte. Scale bar, 10 µm. c,d, Confocal fluorescence images of lysosomes visualized using SCAV-3::GFP (c) and CTNS-1::wrmScarlet (d) in - 2 oocytes and –1 oocytes. Scale bars, 10 µm. e-h, Number of ATG-9 vesicles (e), autophagosomes (f), and lysosomes (g,h) in –2 oocytes and –1 oocytes. Data represent mean ± s.d. (n = 30 animals per strain) from three biological replicates. P values using two-tailed Wilcoxon tests (e,f) and two-tailed paired Student’s t-tests (g,h).

Source data

Extended Data Fig. 4 Mitochondria are acidified during OZT; DRP-1 and FUNDC1 are necessary for mitochondrial acidification.

a,b, Top: Confocal fluorescence images of mitochondria endogenously tagged with both eGFP and mKate2 in the oocyte and zygote. Scale bar, 10 µm. Bottom: Magnifications of boxed regions. Scale bar, 1 µm. Blue arrows indicate non-acidified mitochondria with robust green and red fluorescence. Yellow arrows indicate acidified mitochondria, where red fluorescence dominates. Mitochondria marked by arrowheads are magnified in (b). Scale bar, 1 µm. Green-to-red (G/R) ratio of the overall –2 oocyte mitochondria was normalized to be 1, and the relative G/R values of marked regions in (b) are denoted. c, Quantification of overall mitochondrial eGFP/mKate2 ratio in –2 oocytes and zygotes, revealing mitochondrial acidification in zygotes. Average eGFP/mKate2 ratio of –2 oocytes was normalized to be 1. Data represent mean ± s.d. (n = 25 animals) from three biological replicates. P value using a two-tailed Student’s t-test. d, Quantification of eGFP/mKate2 ratio in whole oocyte mitochondrial network and in the eGFP-diminished mitochondrial regions noted in zygotes. Average G/R ratio of the overall –2 oocyte mitochondrial network was normalized to be 1. Relatively decreased G/R ratio of these zygotic mitochondria suggests they are acidified. Data represent mean ± s.d. (n = 24 animals) from three biological replicates. P values using a two-tailed Wilcoxon test. e, Semi-automated quantification of the number of acidified mitochondria (mitolysosomes) in –2 oocytes and zygotes quantified using the ‘mitoQC counter’ plugin. Data represent mean ± s.d. (n = 26 animals per strain) from three biological replicates. P values using a two-tailed Wilcoxon test. fi, Mitochondrial acidification visualized and quantified in drp-1 RNAi-treated animals, similar to a-e. Scale bars, 10 µm (top) and 2 µm (bottom) (f), 2 µm (g). Data represent mean ± s.d. from three biological replicates. P values using a two-tailed Student’s t-test (n = 22 animals) (h) and a two-tailed Mann–Whitney test (n = 16 animals) (i). jm, Mitochondrial acidification visualized and quantified in fndc-1 mutant animals. Scale bars, 5 µm (top) and 1 µm (bottom) (j), 2 µm (k). Data represent mean ± s.d. from three biological replicates. P values using a two-tailed Student’s t-test (n = 25 animals) (l) and a two-tailed Mann–Whitney test (n = 16 animals) (m). In all panels, blue arrows indicate non-acidified mitochondria, and yellow arrows indicate acidified mitochondria. ‘G/R ratio’ denotes the eGFP/mKate2 fluorescence ratio.

Source data

Extended Data Fig. 5 Rapid mitochondrial fragmentation during the oocyte-to-zygote transition.

a, A schematic of the experimental setup to assess changes to mitochondrial interconnectedness during OZT— photoconversion of a specific mitochondrial region and tracking changes to its morphology. Mitochondrial fusion would result in the intermixing of the photoconverted region with the greater network, while fragmentation would be reflected as breaks in the photoconverted region. b, Top: Examples of mitochondrial photoconversion experiments performed on the –1 oocyte mitochondria (TOMM-20::Dendra2). Boxed region is photoconverted (t = 0 s), and mitochondrial structure is assessed at t = 20. Scale bar, 10 µm. Bottom: Boxed region is magnified. Scale bar, 5 µm. White arrows indicate fragmentation of the photoconverted mitochondrial region. The second example (animal 2) shows rapid fragmentation occurring between t = 20 s and t = 22 s, as indicated by white arrows. c-e, Network parameters of the photoconverted mitochondrial region compared immediately upon photoconversion (t = 0 s) and after 20 s. Data represent mean ± s.d. (n = 10 animals) from three biological replicates. P values using two-tailed paired Student’s t-tests.

Source data

Extended Data Fig. 6 Mitochondrial fragmentation is not sufficient to regulate the timing and extent of mitochondrial reduction at OZT.

a, Top: Confocal fluorescence images showing the change in mitochondrial morphology (visualized with NDUV-2::mNG) between the –2 oocyte and zygote in an empty vector control compared to a fzo-1 RNAi-treated animal. Scale bar, 10 µm. Boxed regions are magnified under original images. Bottom: Skeletonized images of the mitochondria shown in middle panels. Scale bar, 2 µm. b, Quantification of mitochondrial network parameters (NDUV-2::mNG) compared between –2 oocytes and zygotes in control and fzo-1 RNAi-treated animals. Data represent mean ± s.d. (n = 30 animals per condition) from three biological replicates. P values using two-tailed Student’s t-tests and two-tailed Mann–Whitney tests, depending on normality of distribution. c, Quantification of MOZT in control compared to fzo-1 RNAi-treated animals. Data represent ratio of total NDUV-2::mNG fluorescence intensity in the zygote to that in the –2 oocyte for each animal. The data represent the mean ± s.d. (n = 30 animals each condition) from three biological replicates. P value using a two-tailed Student’s t-test. d, Quantification of mean volume (µm3) of individual fragmented mitochondrion, autophagosome, and lysosome in the –1 oocyte. Data represent mean ± s.d. (n = 30 animals per strain) from three biological replicates. P values using a Kruskal–Wallis test followed by a Dunn’s multiple comparisons test.

Source data

Extended Data Fig. 7 FUNDC1 puncta associate with ER and mitochondria, and exhibit two distinct behaviours on oocyte mitochondria.

a-d, Left: mRb3::FNDC-1 puncta visualized together with the endoplasmic reticulum (SP12::GFP) (a), mitochondria (NDUV-2::mNG) (b), ATG-9 puncta (ATG-9::GFP) (c) and lysosomes (SCAV-3::GFP) (d) in the –2 oocyte. Scale bar, 10 µm. Right: Boxed regions are magnified to the right. e, Quantification of Pearson’s correlation coefficient (r) to measure colocalization between mRb3::FNDC-1 puncta and three organelles in the –2 oocyte—the ER, mitochondria, and ATG-9 puncta. Data represent mean ± s.d. (n = 14, 29, 23 animals, respectively) from three biological replicates. P values using one-way ANOVA followed by a Tukey’s multiple comparison test. f, Object-based colocalization analysis measuring proportion of mRb3::FNDC-1 puncta overlapping with ATG-9::GFP positive puncta (n = 15 animals) and lysosomes (SCAV-3::GFP) (n = 19 animals). Data represent mean ± s.d. from three biological replicates. g, Top: Endogenous mRb3::FNDC-1 distribution in the oocyte of a control animal compared to a drp-1 RNAi-treated animal. Yellow and cyan arrows indicate MERC and OMM-localized mRb3::FNDC-1 signal, respectively. Region within dashed lines is segmented below. Bottom: Spectral fluorescence-intensity map of the segmented region, which displays the minimum (L, low) and maximum (H, high) pixel value of the original image. Scale bars, 10 µm. h-j, Number (h), mean fluorescence intensity of mRb3::FNDC-1 puncta (i), and mean fluorescence intensity of OMM-localized mRb3::FNDC-1 signal (j), in oocytes of controls compared to drp-1 RNAi-treated animals. Data represent mean ± s.d. (n = 33 animals per condition) from three biological replicates. P values using two-tailed Mann–Whitney tests. k, Time-lapse images showing dynamic associations of FUNDC1 punctae with mitochondria in the –1 oocyte. Scale bars, 2 µm. Boxes indicate short-dwelling (yellow) and mitochondria-stabilized (blue) FUNDC1 puncta. Note that FUNDC1 puncta observed are not colocalized on mitochondria at t = 0 min, but both gradually localize onto mitochondria. FUNDC1 foci indicated by yellow box starts localizing on mitochondrial surface (NDUV-2::mNG) around t = 2:27 min, fully co-localizes on mitochondria 10 s later, stays associated with mitochondria for 45 s, after which it moves away from mitochondria. FUNDC1 foci indicated by blue box start localizing on mitochondrial surface around t = 1:00 min and stays fully associated with mitochondria for the rest of the time-lapsing experiment (2:37 min). This data represents the two distinct behaviours of FUNDC1 puncta on the –1 oocyte mitochondria shown in Fig. 5e. White arrows indicate the start of FUNDC1 colocalization with mitochondria. Yellow arrow indicates the end of FUNDC1 colocalization with mitochondria. Orange arrow indicates intact mitochondria after short-dwelling FUNDC1 puncta is no longer mitochondrial localized. Supplementary Video 2 shows the time-lapse data from which (k) is derived. l, Pearson’s correlation coefficient (r) plotted over time measuring colocalization of FUNDC1 and mitochondria for both FUNDC1 puncta shown in time-lapse (k). Arrows in representative images from (k) correspond to arrows shown on the line graphs. Data represent FUNDC1 puncta dynamics observed in –1 oocytes of n = 35 animals from 8 independent experiments. m, Proposed model for FUNDC1 localization and function during C. elegans OZT. Panels 1 – 4 show the sequence of molecular events involved in MOZT.

Source data

Extended Data Fig. 8 Oocytes upregulate FUNDC1 levels upon mitochondrial stress, but OZT mitochondrial reduction and fragmentation are not altered.

a, Endogenous mRb3::FNDC-1 distribution in oocytes of a control animal compared to Paraquat, FCCP, and 6PPD-Q treated animals. Scale bar, 10 µm. Refer to Supplementary Fig. 3d for the same representative images with mitochondrial (NDUV-2::mNG) signal. b,c, Mean fluorescence intensity of OMM-localized (b) and MERC localized (c) mRb3::FNDC-1 in oocytes of control animals compared to animals treated with Paraquat, FCCP, and 6PPD-Q. Data represent mean ± s.d. for control (n = 10 animals), Paraquat (n = 10 animals), FCCP (n = 11 animals), and 6PPD-Q (n = 16 animals), from two independent experiments. P values using a one-way ANOVA followed by a Tukey’s multiple comparison test. d, Confocal fluorescence images showing the change in mitochondrial abundance and morphology (visualized with NDUV-2::mNG) between the –2 oocyte and zygote in a control animal compared to a UV-treated animal. Scale bar, 2 µm. e, Quantification of mitochondrial network parameters compared between –2 oocytes and zygotes in control and UV-treated animals. Data represent mean ± s.d. (n = 30 animals per condition) from three biological replicates. P values using two-tailed Student’s t-tests (mitochondrial count) and a two-tailed Mann–Whitney test (mitochondrial volume). f, Quantification of mitochondrial reduction in control vs UV-treated animals. Data represent the ratio of total NDUV-2::mNG fluorescence intensity in the zygote to that in the –2 oocyte for each animal. The data represent the mean ± s.d. (n = 30 animals each condition) from three biological replicates. P value using a two-tailed Student’s t-test. g, Distribution of endogenous ATG-9::GFP in –1 oocytes of a control and UV-treated animal. Scale bar, 10 µm. The same control oocyte is displayed in Extended Data Fig. 3a to show autophagy activation. h, Quantification of number and size (surface area, µm²) of ATG-9 vesicles in –1 oocytes of control vs UV-treated animals. Data represent mean ± s.d. (n = 30 animals) from three biological replicates. P values were calculated from a two-tailed Mann–Whitney test (number) and a two-tailed Student’s t-tests (size).

Source data

Extended Data Fig. 9 fndc-1 embryos are vulnerable to maternally inherited UV-induced damage.

a, Endogenous mRb3::FNDC-1 distribution in the –2 oocyte of a control animal compared to a UV-treated animal. Blue and yellow arrows indicate OMM and MERC-associated mRb3::FNDC-1 signal, respectively. Scale bar, 10 µm. b, Mean fluorescence intensity of OMM-localized mRb3::FNDC-1 signal (left); number (middle) and mean fluorescence intensity of mRb3::FNDC-1 puncta (right) in –2 oocytes of controls compared to those of UV-treated animals. Data represent mean ± s.d. (n = 30 animals per condition) from three biological replicates. P values using a two-tailed Student’s t-test (left graph) and two-tailed Mann–Whitney tests (middle and right graphs). c, Schematic of experimental design to generate mtDNA lesions in oocytes. Inset: Red dots in mitochondria and nucleus denote DNA lesions. d, DIC images of representative F1 progeny of wild-type and fndc-1 mutant parents (P0) treated with UV radiation at L4 stage. Scale bars, 10 µm. Mean embryonic lethality percentage ± s.d. among F1 progeny is indicated. Data represents 10 progeny observed per strain across three replicates. e, Embryonic lethality (mean ± s.d.) in F1 progeny of untreated controls and UV-treated parents (P0), in wild-type and fndc-1 mutant backgrounds. n = 10 animals were used as P0 parents per strain per condition in three independent experiments. P values using a two-tailed Wilcoxon test (wild-type) and a two-tailed Student’s t-test (fndc-1). f, Quantification of the proportion of fndc-1 embryos arrested at specific stages during embryonic development. Embryos assessed are arrested F1 progeny of UV-treated fndc-1 mothers. g, Merged confocal fluorescence images (top) of mitochondria in F1 embryos from control fndc-1 mutant parents (P0) compared to arrested F1 embryos from UV-treated fndc-1 mutant parents (P0). Green, mitochondrial signal; grey, DIC signal. Scale bars, 10 µm. Boxed regions of mitochondrial signal and their skeletonized representations are magnified below. Scale bar, 2 µm. h-j, Mitochondrial network parameters (NDUV-2::mNG) compared between F1 embryos from untreated (control) and UV-treated fndc-1 mutant parents. Data represent mean ± s.d. (n = 11, 12 embryos per condition) from three biological replicates. P values using a two-tailed Mann–Whitney test (h) and two-tailed Student’s t-test (i,j). k, Top to bottom: Confocal fluorescence images of mitochondria (NDUV-2::mNG), TMRE signal, and merged, in a representative F1 embryo from an untreated fndc-1 mutant parent (P0) compared to two arrested F1 embryos from UV-treated fndc-1 mutant parents (P0). Scale bars, 10 µm. l,m, Mitochondrial membrane potential (TMRE signal per mitochondrial signal) compared between mitochondria of F1 embryos from untreated (control) and UV-treated fndc-1 mutant parents. Data represent mean ± s.d. (n = 18 embryos per condition) from three biological replicates. P values using a two-tailed Welch’s test (l) and a two-tailed Mann–Whitney test (m). n, A Schematic of population bottlenecking experimental design to accelerate mtDNA damage accumulation. Green animals denote untreated control worms and magenta animals denote UV-treated worms. o, Relative brood size as an indicator of reproductive fitness of MA lines across generations. Total brood size was calculated at each generation (G0 to G10) in UV-bottlenecked lines and normalized against that of the respective control bottlenecked lines. Green and magenta lines denote the trajectory of reproductive fitness in wild-type (UV) and fndc-1 (UV) bottlenecked lines, respectively. Graph indicates a decline in reproductive fitness of fndc-1 lines relative to controls across generational time upon UV treatment repeated at each generation. Data points represent mean ± s.e.m (n = 11 animals per strain per treatment) from three independent experiments. P values using Kruskal–Wallis test followed by Dunn’s multiple comparisons test. p, Extinction rates of wild-type (UV) and fndc-1 (UV) bottlenecked lines. Y-axis denotes the percentage of bottlenecked lines present at each generation out of 11 wild-type UV lines (green line) and 11 fndc-1 UV lines (magenta line).

Source data

Extended Data Fig. 10 Reproductive decline and embryonic lethality in fndc-1 (UV) lines are strictly maternal effects.

a, A schematic of the experimental design to rescue sperm health in fndc-1 UV lines. Green animals denote untreated worms, and magenta animals denote worms with mtDNA damage. b, Quantification of reproductive fitness (brood size) of self-fertilizing hermaphrodites from fndc-1 UV-bottlenecked lines (fourth generation, G4) compared to those crossed with untreated wild-type males. Data represent mean ± s.d. (n = 11 animals [selfed] and 10 animals [crossed]) from three biological replicates. P values using a two-tailed Student’s t-test. c, Verification of successful crossing between wild-type males and hermaphrodites from fndc-1 UV-bottlenecked lines (G4). Merged confocal images showing F1 progeny with paternally inherited plasma membrane signal (mCherry::PH, magenta; DIC, grey). Magenta signal in progeny confirms successful cross-fertilization by wild-type males. Scale bar, 10 µm. d, Schematic of experimental design to rescue embryonic expression of FUNDC1 in fndc-1 UV-bottlenecked lines (G4). Green denotes the untreated condition, and magenta denotes UV-treated animal. e, Embryonic lethality among F1 progeny of parents from the fndc-1 UV-bottlenecked lines (G4) compared to F1 progeny of parents (from the same lines) injected with FNDC-1 rescuing embryo expression plasmid [pie-1p::mRb3::fndc-1::tbb-2 3′UTR]. Data represent mean ± s.d. (n = 10 animals per condition) from three biological replicates. P values using a two-tailed Mann–Whitney test. f, Merged confocal fluorescence images of mRb3::FNDC-1 (FNDC-1, magenta; DIC, grey) in oocytes of a fndc-1 UV-bottlenecked (G4) parent injected with embryo rescue plasmid and the resulting F1 embryo. Magenta signal in the F1 embryo, but not the parental oocytes confirm embryo-specific rescue of mRb3::FNDC-1 expression. Scale bar, 10 µm.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1 and 2.

Reporting Summary

Peer Review File

Supplementary Video 1

Mitochondrial fragmentation events during C. elegans OZT; FUNDC1 puncta mark sites of mitochondrial fragmentation.

Supplementary Video 2

Dynamic interactions of FUNDC1 puncta with –1 oocyte mitochondria.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Source Data Fig. 6

Statistical Source Data.

Source Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 8

Statistical Source Data.

Source Data Extended Data Fig. 9

Statistical Source Data.

Source Data Extended Data Fig. 10

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thendral, S.B., Bacot, S., Ryde, I.T. et al. Programmed mitophagy at the oocyte-to-zygote transition promotes lineage endurance. Nat Cell Biol (2026). https://doi.org/10.1038/s41556-025-01854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41556-025-01854-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing