Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens

Abstract

Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models. Using transcriptomic, genomic and chemical probes, we identified molecular pathways critical for VIM-2 expression under zinc limitation. In particular, disruption of envelope stress response pathways reduced the growth of VIM-2-expressing bacteria in vitro and in vivo. Furthermore, we showed that VIM-2 expression disrupts the integrity of the outer membrane, rendering VIM-2-expressing bacteria more susceptible to azithromycin. Using a systemic murine infection model, we showed azithromycin’s therapeutic potential against VIM-2-expressing pathogens. In all, our findings provide a framework to exploit the fitness trade-offs of resistance, potentially accelerating the discovery of additional treatments for infections caused by multidrug-resistant bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of VIM-2 has a fitness cost in physiologically relevant environments.
Fig. 2: VIM-2 expression induces the protein misfolding response.
Fig. 3: Targeting the σE pathway preferentially inhibits VIM-2-expressing bacteria.
Fig. 4: VIM-2 expression sensitizes bacteria to a diverse range of antibiotics.
Fig. 5: Elevated levels of VIM-2 expression sensitize P. aeruginosa clinical isolates to azithromycin.

Similar content being viewed by others

Data availability

RNA-seq data are available at the NCBI Sequence Read Archive under BioProject PRJNA1054171 with the accession numbers SRR27256495, SRR27256494, SRR27256493, SRR27256492, SRR27256491 and SRR27256490. The genomic data for E. coli BW25113 referenced in this study are available at the European Nucleotide Archive under the accession number CP009273. In addition, the K. pneumoniae strain ATCC 43816 genome sequence is available in GenBank under BioProject PRJNA675363 with the accession number CP064352. Genomics source data have been deposited on Code Ocean86 (for genetic suppressors—Keio collection, https://doi.org/10.24433/CO.1737239.v1; for genetic enhancers—Keio collection, https://doi.org/10.24433/CO.7249224.v1; for genetic enhancers—CRISPRi collection, https://doi.org/10.24433/CO.7144620.v1). The data presented in Fig. 2a,c–g are provided in Supplementary Tables 1, 3, 4, 5, 7 and 8, respectively. Source data are provided with this paper.

Code availability

The R script supporting the findings of this study is available on Code Ocean86 (for genetic suppressors—Keio collection, https://doi.org/10.24433/CO.1737239.v1; for genetic enhancers—Keio collection, https://doi.org/10.24433/CO.7249224.v1; for genetic enhancers—CRISPRi collection, https://doi.org/10.24433/CO.7144620.v1).

References

  1. Bush, K. The importance of β-lactamases to the development of new β-lactams. in Antimicrobial Drug Resistance: Mechanisms of Drug Resistance (ed. Mayers, D. L.) 135–144 (Humana Press, 2009).

  2. Pandey, N. & Cascella, M. Beta lactam antibiotics. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK545311/ (2023).

  3. Meletis, G. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 3, 15–21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, J. K. et al. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLaughlin, M. et al. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob. Agents Chemother. 57, 5131–5133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis (World Health Organization, 2022).

  9. Everett, M. et al. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 62, e00074-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. González-Bello, C., Rodríguez, D., Pernas, M., Rodríguez, Á. & Colchón, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 63, 1859–1881 (2020).

    Article  PubMed  Google Scholar 

  11. Wang, D. Y., Abboud, M. I., Markoulides, M. S., Brem, J. & Schofield, C. J. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med. Chem. 8, 1063–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Lomovskaya, O. et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 61, e01443-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mansour, H., Ouweini, A. E. L., Chahine, E. B. & Karaoui, L. R. Imipenem/cilastatin/relebactam: a new carbapenem β-lactamase inhibitor combination. Am. J. Health-Syst. Pharm. 78, 674–683 (2021).

    Article  PubMed  Google Scholar 

  14. Lomovskaya, O. et al. QPX7728, an ultra-broad-spectrum β-lactamase inhibitor for intravenous and oral therapy: overview of biochemical and microbiological characteristics. Front. Microbiol. 12, 697180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. López, C., Ayala, J. A., Bonomo, R. A., González, L. J. & Vila, A. J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 10, 3617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meini, M.-R., González, L. J. & Vila, A. J. Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm. Future Microbiol. 8, 947–979 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. González, J. M. et al. Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal–ligand interactions. Nat. Chem. Biol. 8, 698–700 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. González, L. J. et al. Membrane-anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol. 12, 516–522 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meini, M.-R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. González, L. J., Bahr, G., González, M. M., Bonomo, R. A. & Vila, A. J. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat. Chem. Biol. 19, 1116–1126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Côté, J. P. et al. The genome-wide interaction network of nutrient stress genes in Escherichia coli. mBio 7, e01714–e01716 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Velasco, E. et al. A new role for zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli. Sci. Rep. 8, 6535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galani, I., Souli, M., Chryssouli, Z., Katsala, D. & Giamarellou, H. First identification of an Escherichia coli clinical isolate producing both metallo-β-lactamase VIM-2 and extended-spectrum β-lactamase IBC-1. Clin. Microbiol. Infect. 10, 757–760 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Maaroufi, R. et al. Occurrence of NDM-1 and VIM-2 co-producing Escherichia coli and OprD alteration in Pseudomonas aeruginosa isolated from hospital environment samples in northwestern Tunisia. Diagnostics 11, 1617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hernández-García, M. et al. Confronting ceftolozane-tazobactam susceptibility in multidrug-resistant Enterobacterales isolates and whole-genome sequencing results (STEP study). Int. J. Antimicrob. Agents 57, 106259 (2021).

    Article  PubMed  Google Scholar 

  28. Hernández-García, M. et al. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC Antimicrob. Resist. 2, dlaa084 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Falco, A., Ramos, Y., Franco, E., Guzmán, A. & Takiff, H. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan hospital. BMC Infect. Dis. 16, 595 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mohammad Ali Tabrizi, A., Badmasti, F., Shahcheraghi, F. & Azizi, O. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Resist. 15, 93–98 (2018).

    Article  PubMed  Google Scholar 

  31. Vilacoba, E. et al. A blaVIM-2 plasmid disseminating in extensively drug-resistant clinical Pseudomonas aeruginosa and Serratia marcescens isolates. Antimicrob. Agents Chemother. 58, 7017 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghaith, D. M. et al. First reported nosocomial outbreak of Serratia marcescens harboring blaIMP-4 and blaVIM-2 in a neonatal intensive care unit in Cairo, Egypt. Infect. Drug Resist. 11, 2211–2217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan, J.-J., Ko, W.-C., Chuang, C.-L. & Wu, J.-J. Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother. 50, 503–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Porres-Osante, N. et al. First description of a blaVIM-2-carrying Citrobacter freundii isolate in Spain. Antimicrob. Agents Chemother. 58, 6331–6332 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matsumura, Y. et al. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J. Antimicrob. Chemother. 72, 2249–2258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong, D. J. et al. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother. 47, 81–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 51, D690–D699 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Yonekawa, S. et al. Molecular and epidemiological characteristics of carbapenemase producing Klebsiella pneumoniae clinical isolates in Japan. mSphere 5, e00490-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laubacher, M. E. & Ades, S. E. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190, 2065–2074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miot, M. & Betton, J.-M. Protein quality control in the bacterial periplasm. Microb. Cell Factories 3, 4 (2004).

    Article  Google Scholar 

  41. Hews, C. L., Cho, T., Rowley, G. & Raivio, T. L. Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Front. Cell. Infect. Microbiol. 9, 313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rachwalski, K., Tu, M. M., Madden, S. J., Hansen, D. M. & Brown, E. D. A mobile CRISPRi collection enables genetic interaction studies for the essential genes of Escherichia coli. Cell Rep. Methods 4, 100683 (2024).

  44. Klobucar, K., French, S., Côté, J.-P., Howes, J. R. & Brown, E. D. Genetic and chemical–genetic interactions map biogenesis and permeability determinants of the outer membrane of Escherichia coli. mBio 11, e00161-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. et al. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc. Natl Acad. Sci. USA 114, 5689–5694 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beard, S. J. et al. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Gati, C., Stetsenko, A., Slotboom, D. J., Scheres, S. H. W. & Guskov, A. The structural basis of proton driven zinc transport by ZntB. Nat. Commun. 8, 1313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tam, C. & Missiakas, D. Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Mol. Microbiol. 55, 1403–1412 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Konovalova, A. et al. Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins. Proc. Natl Acad. Sci. USA 115, E6614–E6621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. & Gross, C. A. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev. 16, 2156–2168 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bongard, J. et al. Chemical validation of DegS as a target for the development of antibiotics with a novel mode of action. ChemMedChem 14, 1074–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Pogliano, J. et al. Aberrant cell division and random FtsZ ring positioning in Escherichia coli cpxA* mutants. J. Bacteriol. 180, 3486–3490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mathelié-Guinlet, M., Asmar, A. T., Collet, J.-F. & Dufrêne, Y. F. Bacterial cell mechanics beyond peptidoglycan. Trends Microbiol. 28, 706–708 (2020).

    Article  PubMed  Google Scholar 

  54. World Health Organization Model List of Essential Medicines—23rd List (World Health Organization, 2023).

  55. Al-Marzooq, F., Ghazawi, A., Daoud, L. & Tariq, S. Boosting the antibacterial activity of azithromycin on multidrug-resistant Escherichia coli by efflux pump inhibition coupled with outer membrane permeabilization induced by phenylalanine-arginine β-naphthylamide. Int. J. Mol. Sci. 24, 8662 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farha, M. A. et al. Overcoming acquired and native macrolide resistance with bicarbonate. ACS Infect. Dis. 6, 2709–2718 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Geddes, E. J., Li, Z. & Hergenrother, P. J. An LC–MS/MS assay and complementary web-based tool to quantify and predict compound accumulation in E. coli. Nat. Protoc. 16, 4833–4854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicoloff, H., Gopalkrishnan, S. & Ades, S. E. Appropriate regulation of the σE-dependent envelope stress response is necessary to maintain cell envelope integrity and stationary-phase survival in Escherichia coli. J. Bacteriol. 199, e00089-12 (2017).

    Article  Google Scholar 

  59. Moore, J. B., Blanchard, R. K. & Cousins, R. J. Dietary zinc modulates gene expression in murine thymus: results from a comprehensive differential display screening. Proc. Natl Acad. Sci. USA 100, 3883–3888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gammoh, N. Z. & Rink, L. Zinc in infection and inflammation. Nutrients 9, 624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Galloway, S. P., McMillan, D. C. & Sattar, N. Effect of the inflammatory response on trace element and vitamin status. Ann. Clin. Biochem. 37, 289–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Lonergan, Z. R. & Skaar, E. P. Nutrient zinc at the host–pathogen interface. Trends Biochem. Sci. 44, 1041–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mojica, M. F., Bonomo, R. A. & Fast, W. B1-Metallo-beta-lactamases: where do we stand? Curr. Drug Targets 17, 1029–1050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sabath, L. D. & Abraham, E. P. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem. J. 98, 11C–13CC (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng, Z. et al. A single salt bridge in VIM-20 increases protein stability and antibiotic resistance under low-zinc conditions. mBio 10, e02412–e02419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsuchido, T., VanBogelen, R. A. & Neidhardt, F. C. Heat shock response in Escherichia coli influences cell division. Proc. Natl Acad. Sci. USA 83, 6959–6963 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vats, P., Shih, Y.-L. & Rothfield, L. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol. Microbiol. 72, 170–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell, A. M. & Silhavy, T. J. Envelope stress responses: balancing damage repair and toxicity. Nat. Rev. Microbiol. 17, 417–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Souque, C., Escudero, J. A. & MacLean, R. C. Integron activity accelerates the evolution of antibiotic resistance. eLife 10, e62474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poirel, L. et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44, 891–897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simner, P. J. et al. An NDM-producing Escherichia coli clinical isolate exhibiting resistance to cefiderocol and the combination of ceftazidime-avibactam and aztreonam: another step towards pan-β-lactam resistance. Open Forum Infect. Dis. 10, ofad276 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cox, G. et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Chung, C. T., Niemela, S. L. & Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl Acad. Sci. USA 86, 2172–2175 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016); 34, 888 (2016).

  77. Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Article  Google Scholar 

  78. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Keseler, I. M. et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 41, D605–D612 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Karp, P. D. Pathway databases: a case study in computational symbolic theories. Science 293, 2040–2044 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Depardieu, F. & Bikard, D. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods 172, 61–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. French, S. et al. A robust platform for chemical genomics in bacterial systems. Mol. Biol. Cell 27, 1015–1025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Das, I., Burch, R. E. & Hahn, H. K. Effects of zinc deficiency on ethanol metabolism and alcohol and aldehyde dehydrogenase activities. J. Lab. Clin. Med. 104, 610–617 (1984).

    CAS  PubMed  Google Scholar 

  86. Seamless sharing and peer review of code. Nat. Comput. Sci. 2, 773 (2022).

Download references

Acknowledgements

We thank G. Wright from McMaster University for bacterial strains from the Institute for Infectious Disease Research clinical collection. We also thank the Centre for Microbial Chemical Biology at McMaster University, specifically N. Henriquez for LC–MS/MS. This research was supported by a Tier 1 Canada Research Chair award, a Foundation Grant from the Canadian Institutes of Health Research (CHIR; FRN 143215) and a grant from the Ontario Research Fund (RE09-047) to E.D.B. M.M.T. was supported by a CIHR Canada Graduate Scholarship (CGS-D). D.C. was supported by a CIHR Canada Graduate Scholarship (CGS-M) and an Ontario Graduate Scholarship. M.E.S. was supported by a CIHR Canada Graduate Scholarship (CGS-M). J.M.S. was supported by The Weston Family Foundation and the CIHR. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M.T. conceived the research, designed and carried out experiments and data analysis, and wrote the manuscript. L.A.C. and R.G. assisted in the animal experiments. K.R. assisted with the design of the mobile plasmids and the execution of the genomic studies. S.F. performed the microscopy analysis. D.C. aided in the analysis of the RNA-seq dataset. C.R.M. assisted with manuscript editing. M.E.S. and F.W. acquired MIC data. J.M.S. assisted with data interpretation and manuscript editing. E.D.B. conceived the research and assisted with data interpretation and manuscript editing.

Corresponding author

Correspondence to Eric D. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 VIM-2 expression reduces K. pneumoniae growth in zinc-limited human serum.

(a, b) CFU/mL of viable cell counts of K. pneumoniae expressing VIM-2 (blue) and the empty vector (dark red) in 50% human serum (a, n = 5 for all time points except for 12 hours (n = 3)) and 50% human serum supplemented with 10 µM ZnSO4 (b, n = 6 for all time points except for 12 hours (n = 3) and 24 hours (n = 5)) over 24 hours. Data are mean ± s.e.m.

Source data

Extended Data Fig. 2 Overexpression of degP is associated with improved growth of carbapenem-resistant bacteria.

(a) mRNA levels of degP compared in wildtype and mutant Keio strains, transcript levels were normalized to the level of rrsE. The dotted line delineates degP levels in wildtype (WT), at a fold change of 1. Data are mean ± s.e.m. (WT, n = 7; ∆waaP, n = 4; ∆gmhA, n = 7; ∆atpD, n = 6; ∆hldE, n = 3; ∆waaF; n = 6; ∆yiiS, n = 2; n is defined as biological replicates and each biological replicate consists of at least two technical replicates). Statistical significance was determined using a Kruskal-Wallis test with Dunn’s test for multiple comparisons, relative to the WT (∆waaP, *P = 0.039; ∆gmhA, ****P < 0.0001; ∆atpD, *P = 0.013; ∆hldE, ****P < 0.0001; ∆waaF, ****P < 0.0001; ∆yiiS, ***P = 0.0005). (b) Protein levels of DegP from whole cell lysates in wildtype and mutant Keio strains. RNA Polymerase subunit α served as a loading control. Data is a representative blot of three biological replicates. (c) mRNA levels of degP compared in K. pneumoniae carrying the empty vector (Empty; n = 3) and expressing VIM-2 (VIM-2; n = 3) following growth in vivo. Samples were collected 7 hours post-infection from the blood. Transcript levels were normalized to the level of recA. Data are mean ± s.e.m, and each point represents an individual mouse. Statistical analysis was performed using a two-tailed unpaired t-test, **P < 0.01 (t = 6.727, df=4).

Source data

Extended Data Fig. 3 Inhibiting DegS is a viable strategy to treat VIM-2-expressing K. pneumoniae in vivo.

Viable cell counts of K. pneumoniae carrying the empty vector (Empty) or expressing VIM-2 (VIM-2) in the (a) blood, (b) kidney, and (c) liver. Each strain was treated with a vehicle (grey; blood n = 5,5; kidney n = 7,6, liver n = 7,7) or 50 mg/kg of the DegS inhibitor (orange; blood n = 4,8, kidney n = 6,8, liver n = 6,10) one hour after infection. Each point represents an individual mouse. The centre line delineates the median, the box limits mark the upper and lower quartiles, and the whiskers depict the range. CFU were enumerated at 6 hours post-infection. Statistical analysis was performed using a two-sided Mann-Whitney test with Benjamini, Krieger and Yekutieli’s multiple comparisons test, *P < 0.05, **P < 0.01. The mouse infection model was repeated on three separate days.

Source data

Extended Data Fig. 4 VIM-2 expression impairs cell septation under zinc-limited conditions.

(a, b) Fluorescent microscopy of wildtype (WT) E. coli, E. coli carrying the empty vector, and E. coli expressing VIM-2 in (a) M9 minimal media and (b) M9 minimal media supplemented with 10 µM ZnSO4. Cells are stained with FM 4-64. Scale bar = 10 µm. (c) Fluorescent microscopy of wildtype (WT) K. pneumoniae, K. pneumoniae carrying the empty vector, and K. pneumoniae expressing VIM-2 in M9 minimal media. Cells are stained with FM 4-64. Scale bar = 10 µm. Microscopy was repeated in duplicate to ensure consistent phenotypes.

Extended Data Fig. 5 A22 selectively targets VIM-2 expressing K. pneumoniae in human serum.

Competitive index (CI) for the co-inoculation of K. pneumoniae expressing VIM-2 and the empty vector in 50% human serum at 24 hours in the presence of two-fold dilutions of A22 (0 µg/mL, n = 7; 2 µg/mL, n = 2; 4 µg/mL, n = 4; 8 µg/mL, n = 5; 16 µg/mL n = 3; 32 µg/mL, n = 4). Data are mean ± s.e.m. The dotted line represents a CI of 1.

Source data

Extended Data Fig. 6 VIM-2 expression disrupts the integrity of the outer membrane.

N-Phenly-1-naphthylamine (NPN) uptake of E. coli expressing VIM-2 (light blue) relative to the empty vector control (red) in M9 minimal media (n = 6,6), M9 minimal media supplemented with 10 µM ZnSO4 (n = 5,6), and M9 minimal media supplemented with 10 µM MgSO4 (n = 4,6). Data are mean ± s.e.m. Statistical significance was assessed using a two-sided unpaired t-test with false discovery rate correction, applying the two-stage linear step-up method by Benjamini, Krieger, and Yekutieli, ***P < 0.001 (M9: t = 11.35, df=10; M9 + Zn2+: t = 1.333, df = 9; M9 + Mg2+: t = 26.20, df=8).

Source data

Extended Data Fig. 7 Azithromycin is a viable treatment option for VIM-2-expressing K. pneumoniae in vivo.

Viable cell counts of K. pneumoniae carrying the empty vector (Empty) or expressing VIM-2 (VIM-2) in the (a) spleen, (b) kidney, and (c) liver. Each strain was treated with a vehicle (grey; spleen n = 11,12; kidney n = 7,11, liver n = 11,12) or 10 mg/kg of azithromycin (purple; blood n = 6,6, kidney n = 4,5, liver n = 6,6) one hour after infection and 3.5 hours post-infection. Each point represents an individual mouse. The centre line delineates the median, the box limits mark the upper and lower quartiles, and the whiskers depict the range. CFU were enumerated at 6 hours post-infection. Statistical analysis was performed using a two-sided Mann-Whitney test with Benjamini, Krieger and Yekutieli’s multiple comparisons test, *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 8 Clinical isolate of P. aeruginosa naturally expressing VIM-2 displays a fitness cost in zinc-limited environments.

(a) Growth kinetics of a clinical P. aeruginosa isolate that naturally expresses VIM-2 (GDW923) and (b) PAO1, a control strain, in M9 minimal media (n = 5,2; light blue) and M9 minimal media supplemented with 10 µM of ZnSO4 (n = 6,2; dark blue). Data are mean ± s.e.m. Data is normalized to OD600 of each strain at 48 hours and fit to Gompertz growth. (c) CFU/mL of viable cell counts of P. aeruginosa expressing VIM-2 and PAO1, a VIM-2 negative strain, in 50% human serum (n = 3,4; light blue) and 50% human serum supplemented with 10 µM ZnSO4 (n = 3,4; dark blue) at 24 hours. Data are mean ± s.e.m. Statistical significance was assessed using a two-sided unpaired t-test with false discovery rate correction, applying the two-stage linear step-up method by Benjamini, Krieger, and Yekutieli, **P < 0.01 (GDW923: t = 5.050, df=4; PAO1: t = 0.4850, df=6). (d) Fluorescent microscopy of a clinical P. aeruginosa isolate that naturally expresses VIM-2 (GDW923) and PAO1, a VIM-2 negative strain, in M9 minimal media and M9 minimal media supplemented with 10 µM ZnSO4. Cells are stained with FM 4-64. Scale bar = 10 µm. (e) NPN uptake of P. aeruginosa expressing VIM-2 (GDW923) in M9 minimal media (n = 6,6) and M9 minimal media supplemented with 10 µM ZnSO4 (n = 6,6). A carbapenem-susceptible P. aeruginosa strain (PA01) is used as a control. Data are mean ± s.e.m. Statistical significance was assessed using a two-sided unpaired t-test with false discovery rate correction, applying the two-stage linear step-up method by Benjamini, Krieger, and Yekutieli, ****P < 0.0001 (GDW923: t = 9.809, df=10; PAO1: t = 3.137, df=10).

Source data

Extended Data Fig. 9 Subinhibitory concentrations of meropenem sensitize clinical isolates to azithromycin and elevate VIM-2 expression.

(a) MIC of azithromycin against a panel of P. aeruginosa clinical isolates harbouring VIM-2 and PAO1, a VIM-2 negative strain in M9 minimal media and M9 minimal media supplemented with ½ MIC of meropenem. (b) mRNA levels of vim-2 compared in clinical isolates in M9 minimal media (CDC 230, n = 3; CDC 242, n = 3; CDC 254, n = 3; CDC 255, n = 6) and M9 minimal media supplemented with ½ MIC of meropenem (CDC 230, n = 4; CDC 242, n = 3; CDC 254, n = 5; CDC 255, n = 5). Transcript levels were normalized to the level of 16S rRNA. The dotted line delineates vim-2 levels in CDC 230, at a fold change of 1. Data are mean ± s.e.m. Statistical significance was assessed using a two-sided unpaired t-test with false discovery rate correction, applying the two-stage linear step-up method by Benjamini, Krieger, and Yekutieli, *P < 0.05, ****P < 0.0011 (CDC 230: t = 3.682, df=5; CDC 242: t = 2.809, df=4; CDC 254: t = 1.380, df=6; CDC 255: t = 9.033,df=9).

Source data

Extended Data Fig. 10 Azithromycin reduces the bacterial load of a clinical P. aeruginosa isolate naturally expressing VIM-2 in vivo.

Log10 reduction of viable cell counts P. aeruginosa CDC 243 in the spleen, kidney, and liver treated with 50 mg/kg of azithromycin one-hour post-infection relative to vehicle-treated mice (n = 4). Mice also received a treatment of 100 mg/kg of ZnSO4 every four hours or a vehicle (n = 4). Each point represents an individual mouse. The centre line delineates the median, the box limits mark the upper and lower quartiles, and the whiskers depict the range. CFUs were enumerated at 18 hours post-infection. Statistical analysis was performed using a two-tailed unpaired t-test, *P < 0.05, **P < 0.01 (Spleen: t = 4.982, df=6; Kidney: t = 4.745, df=6; Liver: t = 3.003, df=6).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 2, 4, 6, 8, 11 and 12.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1, 3, 5, 7, 9 and 10.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, M.M., Carfrae, L.A., Rachwalski, K. et al. Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens. Nat Microbiol 10, 53–65 (2025). https://doi.org/10.1038/s41564-024-01883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01883-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research