Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phage resistance mutations in a marine bacterium impact biogeochemically relevant cellular processes

Abstract

Phage–bacteria interactions shape ecology and biogeochemistry across biomes. Resistance, arising from their evolutionary arms race, is well documented for receptor mutations, but other resistance mechanisms and their ecological implications remain unexplored. Here we isolated, sequenced and characterized 13 phage-resistant mutants of marine Cellulophaga baltica (Flavobacteriia). Mechanistically, mutations in surface proteins provided broad and complete extracellular resistance against multiple phages through decreased adsorption. Intracellular mutations affecting serine, glycine and threonine metabolism produced narrower resistance against a single phage, permitting viral DNA replication, and, in one mutant, were shown to be lipid mediated. Putative ecosystem impacts inferred from in vitro experiments include: (1) altered carbon utilization for all mutants, but especially by surface ones, (2) increased metabolite secretion for one modelled intracellular mutant (including experimentally verified acetate) and (3) increased ‘stickiness’ for all mutants, with surface mutants also sedimenting faster. Our findings highlight new resistance mechanisms and suggest that the phage–host arms race could result in ecosystem-level biogeochemical impacts in marine microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thirteen mutants were isolated from Cba18-WT infected with phi18:1 or phi18:4.
Fig. 2: Cba18 mutants have different infection patterns against a collection of 11 phages.
Fig. 3: A single mutation in the serine synthesis pathway reduces l-serine production and alters lipid composition in mutant 184f1.
Fig. 4: Mutation type alters ecologically relevant phenotypes for mutant strains.
Fig. 5: Conceptual model for how phage resistance mutations impact cellular- and ecosystem-scale functions.

Similar content being viewed by others

Data availability

The genomes of all previously published viral and wild-type bacterial strains used in this study are publicly deposited in the National Center for Biotechnology Information (Supplementary Table 2), and the raw reads of the 13 mutants were deposited under the accession number PRJNA1261028. The lipidomics data have been deposited at MassIVE under the study identifier MSV000098411 and are available via GitHub at https://github.com/cowusuansah/cba-mutant-fba-analysis.

Code availability

The KBase narrative used for genome annotation, model construction and gap-filling is publicly available at https://narrative.kbase.us/narrative/230154 and https://kbase.us/n/230154/1/. The complete FBA pipeline, including model files, media definitions, simulation scripts and analysis results, is available via GitHub at https://github.com/cowusuansah/cba-mutant-fba-analysis.

References

  1. Cobián Güemes, A. G. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).

    Article  PubMed  Google Scholar 

  2. Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  PubMed  Google Scholar 

  3. Castledine, M. & Buckling, A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol. https://doi.org/10.1016/j.tim.2024.02.014 (2024).

    Article  PubMed  Google Scholar 

  4. Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).

    Article  PubMed  Google Scholar 

  5. Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Howard-Varona, C. et al. Protist impacts on marine cyanovirocell metabolism. ISME Commun. 2, 94 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henshaw, R. J. et al. Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria. Nat. Microbiol. 9, 3184–3195 (2024).

    Article  PubMed  Google Scholar 

  8. Biller, S. J. et al. Distinct horizontal gene transfer potential of extracellular vesicles versus viral-like particles in marine habitats. Nat. Commun. 16, 2126 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).

    Article  Google Scholar 

  10. Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).

    Article  PubMed  Google Scholar 

  11. Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    Article  PubMed  Google Scholar 

  12. Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martiny, J. B. H., Riemann, L., Marston, M. F. & Middelboe, M. Antagonistic coevolution of marine planktonic viruses and their hosts. Annu. Rev. Mar. Sci. 6, 393–414 (2014).

    Article  Google Scholar 

  14. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  PubMed  Google Scholar 

  15. Bohm, K. et al. Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens. Mol. Microbiol. 108, 288–305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castillo, D., Christiansen, R. H., Dalsgaard, I., Madsen, L. & Middelboe, M. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factors. Appl. Environ. Microbiol. 81, 1157–1167 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcusvirus coexistence. Nature 474, 604–608 (2011).

    Article  PubMed  Google Scholar 

  18. Sokolova, D. et al. Spontaneous mutations in hlyD and tuf genes result in resistance of Dickeya solani IPO 2222 to phage ϕD5 but cause decreased bacterial fitness and virulence in planta. Sci. Rep. 13, 7534 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kunttu, H. M. T. et al. Bacteriophage resistance affects Flavobacterium columnare virulence partly via mutations in genes related to gliding motility and the type IX secretion system. Appl. Environ. Microbiol. 87, e00812–e00821 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, L., Zhao, X., Wongso, S., Lin, Z. & Wang, S. Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence. ISME J. 18, wrae214 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zborowsky, S., Tahan, R. & Lindell, D. Adaptive loss of tRNA gene expression leads to phage resistance in a marine Synechococcus cyanobacterium. Nat. Microbiol. 10, 66–76 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu, Z. et al. Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness. ISME J. 17, 2200–2209 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skliros, D. et al. The development of bacteriophage resistance in Vibrio alginolyticus depends on a complex metabolic adaptation strategy. Viruses 13, 656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kongari, R. et al. The transcriptional program of Staphylococcus aureus phage K is affected by a host rpoC mutation that confers phage K resistance. Viruses 16, 1773 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Labrie, S. J. et al. A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Sci. Rep. 9, 13816 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).

    Article  Google Scholar 

  28. Landor, L. A. I. et al. At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli. Environ. Microbiol. Rep. 16, e70046 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gómez, P. & Buckling, A. Bacteria–phage antagonistic coevolution in soil. Science 332, 106–109 (2011).

    Article  PubMed  Google Scholar 

  30. Middelboe, M., Holmfeldt, K., Riemann, L., Nybroe, O. & Haaber, J. Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ. Microbiol. 11, 1971–1982 (2009).

    Article  PubMed  Google Scholar 

  31. Lennon, J. T. & Martiny, J. B. H. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).

    Article  PubMed  Google Scholar 

  32. Lennon, J. T., Khatana, S. A. M., Marston, M. F. & Martiny, J. B. H. Is there a cost of virus resistance in marine cyanobacteria? ISME J. 1, 300–312 (2007).

    Article  PubMed  Google Scholar 

  33. Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100 (2002).

    PubMed  Google Scholar 

  34. Amaral-Zettler, L. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) Ch. 12 (Wiley, 2010).

  35. Cordone, A. et al. Bacterioplankton diversity and distribution in relation to phytoplankton community structure in the ross sea surface waters. Front. Microbiol. 13, 722900 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jain, A. & Krishnan, K. P. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J. Basic Microbiol. 57, 827–838 (2017).

    Article  PubMed  Google Scholar 

  37. Haider, M. N. & Nishimura, K. Bacterial community structure and diversity of closely located coastal areas. Open J. Mar. Sci. 06, 423–439 (2016).

    Article  Google Scholar 

  38. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Article  PubMed  Google Scholar 

  39. Fadeev, E. et al. Microbial communities in the east and west fram strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).

    Article  Google Scholar 

  40. Holmfeldt, K. et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc. Natl Acad. Sci. USA 110, 12798–12803 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Holmfeldt, K. et al. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. Environ. Microbiol. 18, 3949–3961 (2016).

    Article  PubMed  Google Scholar 

  42. Dang, V. T., Howard-Varona, C., Schwenck, S. & Sullivan, M. B. Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. Environ. Microbiol. 17, 4659–4671 (2015).

    Article  PubMed  Google Scholar 

  43. Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Howard-Varona, C. et al. Infection and genomic properties of single- and double-stranded DNA Cellulophaga phages. Viruses 17, 365 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    Article  PubMed  Google Scholar 

  46. Goldberg, J. B., Hatano, K. & Pier, G. B. Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J. Bacteriol. 175, 1605–1611 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  47. McBride, M. J. & Zhu, Y. Gliding motility and por secretion system genes are widespread among members of the phylum bacteroidetes. J. Bacteriol. 195, 270–278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sørensen, P. E. et al. Spontaneous phage resistance in avian pathogenic Escherichia coli. Front. Microbiol. 12, 782757 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Raetz, C. R. H. Phosphatidylserine synthetase mutants of Escherichia coli. Genetic mapping and membrane phospholipid composition. J. Biol. Chem. 251, 3242–3249 (1976).

    Article  PubMed  Google Scholar 

  50. Raetz, C. R. H., Kantor, G. D., Nishijima, M. & Newman, K. F. Cardiolipin accumulation in the inner and outer membranes of Escherichia coli mutants defective in phosphatidylserine synthetase. J. Bacteriol. 139, 544–565 (1979).

  51. Saha, S. K., Nishijima, S., Matsuzaki, H., Shibuya, I. & Matsumoto, K. A regulatory mechanism for the balanced synthesis of membrane phospholipid species in Escherichia coli. Biosci. Biotechnol. Biochem. 60, 111–116 (1996).

    Article  PubMed  Google Scholar 

  52. Ito, Y., Okazaki, H., Sakuma, S., Homma, M. & Ishida, N. Specific requirement of serine for the growth of Newcastle disease virus. Virology 39, 277–285 (1969).

    Article  PubMed  Google Scholar 

  53. Schäfer, R. & Franklin, R. M. Structure and synthesis of a lipid-containing bacteriophage: total reconstitution of bacteriophage PM2 in vitro. Eur. J. Biochem. 92, 589–596 (1978).

    Article  PubMed  Google Scholar 

  54. Tsukagoshi, N., Schäfer, R. & Franklin, R. M. Structure and synthesis of a lipid-containing bacteriophage. Effects of lipids containing cis or trans fatty acids on the reconstitution of bacteriophage PM2. Eur. J. Biochem. 73, 469–476 (1977).

    Article  PubMed  Google Scholar 

  55. Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl Acad. Sci. USA 113, E1907–E1916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Feng, L. et al. Resistance, mechanism, and fitness cost of specific bacteriophages for Pseudomonas aeruginosa. mSphere 9, e0055323 (2024).

    Article  PubMed  Google Scholar 

  58. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut Bacteroidetes: the food connection. Front. Microbiol. 2, 93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chevenier, A., Jouanneau, D. & Ficko-Blean, E. Carrageenan biosynthesis in red algae: a review. Cell Surf. 9, 100097 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pontrelli, S. et al. Metabolic cross-feeding structures the assembly of polysaccharide degrading communities. Sci. Adv. 8, eabk3076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cirri, E. & Pohnert, G. Algae–bacteria interactions that balance the planktonic microbiome. N. Phytol. 223, 100–106 (2019).

    Article  Google Scholar 

  62. Braun, T. F. & McBride, M. J. Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J. Bacteriol. 187, 2628–2637 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhuang, G. C., Peña-Montenegro, T. D., Montgomery, A., Montoya, J. P. & Joye, S. B. Significance of acetate as a microbial carbon and energy source in the water column of Gulf of Mexico: implications for marine carbon cycling. Glob. Biogeochem. Cycles 33, 223–235 (2019).

    Article  Google Scholar 

  64. Hosmer, J., McEwan, A. G. & Kappler, U. Bacterial acetate metabolism and its influence on human epithelia. Emerg. Top. Life Sci. 8, 1–13 (2023).

    PubMed Central  Google Scholar 

  65. Azimi, S. et al. O-specific antigen-dependent surface hydrophobicity mediates aggregate assembly type in Pseudomonas aeruginosa. mBio 12, e0086021 (2021).

    Article  PubMed  Google Scholar 

  66. Krasowska, A. & Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 4, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl. Environ. Microbiol. 69, 3500–3509 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Andrew, S. FastQC a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  70. Andrews, S. FastQC: a quality control tool for high throughput sequence data. GitHub https://github.com/s-andrews/FastQC (2010).

  71. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  72. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    Article  Google Scholar 

  75. Baumann, P. The marine Gram negative eubacteria: genera Photobacterium, Benekea, Alteromonas, Pseudomonsa and Alcaligenes. Starr https://cir.nii.ac.jp/crid/1570009750254442624 (1981).

  76. Sprouffske, K. & Wagner, A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172 (2016).

    Article  Google Scholar 

  77. Urvoy, M. et al. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ. Microbiol. 23, 7183–7200 (2021).

    Article  PubMed  Google Scholar 

  78. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rowe, E. G., Palsson, B. O. & King, Z. A. Escher-FBA: a web application for interactive flux balance analysis. BMC Syst. Biol. 12, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Faria, J. P. et al. ModelSEED v2: high-throughput genome-scale metabolic model reconstruction with enhanced energy biosynthesis pathway prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.10.04.556561 (2023).

  82. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, 575–588 (2021).

    Article  Google Scholar 

  84. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Varma, A., Boesch, B. W. & Palsson, B. O. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. de Arroyo Garcia, L. & Jones, P.R. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli. PLoS Comput. Biol. 16, e1008125 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Han, J., Lin, K., Sequeira, C. & Borchers, C. H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 854, 86–94 (2015).

    Article  PubMed  Google Scholar 

  90. Loferer-Krößbacher, M., Klima, J. & Psenner, R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. Environ. Microbiol. 64, 688–694 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether forhigh-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tsugawa, H. et al. MS-DIAL: data independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tavis, S. L., Keller, M. J., Stai, A. J., Rush, T. A. & Hettich, R. L. LipoCLEAN: a machine learning filter to improve untargeted lipid identification confidence. Anal. Chem. 97, 255–261 (2025).

    Article  PubMed  Google Scholar 

  96. Agrawal, S. et al. El-MAVEN: a fast, robust, and user-friendly mass spectrometry data processing engine for metabolomics. Methods Mol. Biol. 1978, 301–321 (2019).

    Article  PubMed  Google Scholar 

  97. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  98. Wilkins, D. gggenes: Draw gene arrow maps in 'ggplot2'. R version 0.5.1 https://CRAN.R-project.org/package=gggenes (2023).

  99. Moser, R., Aktas, M., Fritz, C. & Narberhaus, F. Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol. Microbiol. 92, 959–972 (2014).

    Article  PubMed  Google Scholar 

  100. Cassilly, C. D. & Reynolds, T. B. P. S. It’s complicated: the roles of phosphatidylserine and phosphatidylethanolamine in the pathogenesis of Candida albicans and other microbial pathogens. J. Fungi 4, 28 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Arroyo, E. Nitz and A. Fofana for help during laboratory work, M. Gittrich for phage-biology discussions, and G. Smith and D. Segrè for advice on FBA modelling. The University of Arizona Analytical and Biological Mass Spectrometry Facility is acknowledged for analytical chemistry expertise and support with data acquisition for acetate quantification. This work was supported by awards from the US National Science Foundation (awards OCE-2019589 and DBI-2022070) and US Department of Energy, Office of Science, Office of Biological and Environmental Research (awards DE-SC0020173 and DE-SC0023307) to M.B.S. and The Swedish Research Council (2022-04340) to K.H. This is C-CoMP Publication No. 79.

Author information

Authors and Affiliations

Authors

Contributions

M.U. conceived, designed and performed experiments, analysed the data, and wrote the paper. C.O.-A. and A.J.S. performed the experiments and analysed the data. J.A.B., M.B. and N.S. performed the experiments. R.L.H. and M.M.T. conceived and designed the experiments and contributed materials/analysis tools. K.H. conceived and designed and performed the experiments. C.H.-V., K.G. and M.B.S. conceived and designed the experiments and wrote the paper.

Corresponding author

Correspondence to Matthew B. Sullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Key values used during the growth simulation of Cba18-WT and 184f1 to assess acetate secretion

Extended Data Fig. 1 Glycine complementation partially rescues phi18:4 infection in mutant 184f1.

(A) At 50 mM, glycine rescued the infection of phi18:4 in 184f1, while l-serine and l-threonine did not affect phage production. None of these three amino acids affected phage production in mutants 184d1 and 184e1. Growth of all strains was visibly affected at higher concentrations of glycine, l-serine, and l-threonine and thus concentrations higher than 50 mM could not be tested. (B) Glycine rescued the infection of mutant 184f1 above a threshold concentration of 25 mM, with similar effects between 25 and 50 mM. The titer of phage phi18:4 on Cba18-WT and mutant 184f1 are represented in black and green, respectively.

Extended Data Fig. 2 FBA-derived assessment of metabolic bottlenecks for phage ‘building blocks’.

(A) Amino acid proportion in Cba18-WT and phi18:4, calculated using all coding regions for both organisms. The relative ratio in phi18:4 vs. Cba18-WT is indicated as dots, and amino acids are ranked according to this ratio. l-serine, glycine and l-threonine all have a ratio close to 1 (indicated by the grey vertical bar), suggesting that they would not be limiting for the translation of phi18:4’s proteins. (B-E) FBA-derived production fluxes of amino acids (B), nucleotides (C), cofactors (D), and lipids and lipid precursors (E). l-serine was overall the most impacted metabolites. Black dots represent the ratio of production between 184f1 and Cba18-WT for a given metabolite, and the grey dashed vertical lines represent a ratio of 1.

Extended Data Fig. 3 Experimental ranked doubling times for the mutants relative to Cba18-WT.

Doubling times show that surface mutants (circle) were more impacted than mutants with amino acid-related mutations (square), especially when they were grown on sugars (teal) compared to proteinaceous compounds (red). Doubling times obtained on complex MLB medium are plotted in black. Since the doubling times are relative to Cba18-WT, a doubling time of 1 (horizontal dashed line) indicates no difference between the mutant and Cba18-WT. Darker vertical bars indicate statistical significance (n = 3; two-sample,Welch’s t-test, PBH < 0.05), while lighter ones indicate no significance.

Extended Data Fig. 4 Mutant 184f1’s mutation induces changes in its FBA-modeled secretion profile compared to Cba18-WT, with similar profiles across the 7 modeled carbon sources.

(A) Flux difference between 184f1 and Cba18-WT. A grey square means that neither Cba18-WT nor mutant 184f1 secrete that metabolite in the given medium. (B) Normalized flux difference between 184f1 and Cba18-WT. Normalized flux difference was obtained by dividing the flux difference between Cba18-WT and 184f1 by the sum of their absolute values. Thus, a normalized difference of 1 means that the metabolite is exclusively secreted by mutant 184f1, while a normalized flux difference of –1 means an exclusive Cba18-WT secretion.

Extended Data Fig. 5 Experimental specific acetate ratio between mutant 184f1 and Cba18-WT showed good agreement with the simulated ratio, derived from FBA secretion fluxes.

To compare experimental acetate concentrations to FBA acetate secretion fluxes, we simulated an exponential growth for Cba18-WT and 184f1 –as close as possible to the experimental conditions- and integrated the instantaneous acetate secretion rate over time, assuming no reuptake. Both experiment and simulation were done using D-glucose as a single C source, with key values during the experiment and growth simulation presented in Extended Data Table 1. Simulation of Cba18-WT and 184f1’s exponential growth and acetate concentration.

Supplementary information

Supplementary Information

Supplementary table legends 1–7, Figs. 1–12, Results and References.

Reporting Summary

Peer Review File

Supplementary Tables 1–7

Supplementary Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urvoy, M., Howard-Varona, C., Owusu-Ansah, C. et al. Phage resistance mutations in a marine bacterium impact biogeochemically relevant cellular processes. Nat Microbiol 11, 195–210 (2026). https://doi.org/10.1038/s41564-025-02202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02202-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology