Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cultivation and visualization of a methanogen of the phylum Thermoproteota

Abstract

Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3,4,5,6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the methanogenic enrichment culture.
Fig. 2: Translational activity and conversion of stable isotope tracers.
Fig. 3: Proposed methane and hydrogen metabolism in Ca. M. verstraetei strain LCB70.
Fig. 4: Cryoelectron tomography of LCB70 cells.

Similar content being viewed by others

Data availability

The LCB70 enrichment culture metagenomic, metatranscriptomic, and amplicon data are deposited under NCBI BioProject ID PRJNA916083. The LCB070 hot spring metagenome is publicly available on the IMG database under the taxon ID 3300043544 and the strain LCB70 genome under taxon ID 8012933652. Cryo-tomograms are deposited at EMDB/EMPIAR under accession numbers EMD-50298 to EMD-50305, EMD-50308 to EMD-50313 and EMD-50315. Raman spectra are available in the MicrobioRaman database (https://www.ebi.ac.uk/biostudies/MicrobioRaman/studies) with accession number S-MBRS7.  Source data are provided with this paper.

References

  1. Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    CAS  PubMed  Google Scholar 

  2. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    CAS  PubMed  Google Scholar 

  3. Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 4, 603–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).

    CAS  PubMed  Google Scholar 

  5. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    ADS  CAS  PubMed  Google Scholar 

  6. Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 1–9 (2016).

    Google Scholar 

  7. Saunois, M. et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    ADS  Google Scholar 

  8. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).

    CAS  PubMed  Google Scholar 

  9. Thauer, R. K. Methyl (Alkyl)-Coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).

    CAS  PubMed  Google Scholar 

  10. Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

    CAS  PubMed  Google Scholar 

  11. Stephenson, M. & Stickland, L. H. Hydrogenase: the bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen. Biochem. J. 27, 1517–1527 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).

    CAS  PubMed  Google Scholar 

  13. Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane metabolism and dissimilatory sulfite reduction discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).

    CAS  PubMed  Google Scholar 

  15. McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Lynes, M. M. et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Commun. 3, 22 (2023).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Buessecker, S. et al. Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring. ISME J. 17, 1649–1659 (2023).

    CAS  PubMed  Google Scholar 

  19. Wang, J. et al. Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs. Sci. Adv. 9, eadg6004 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynes, M. M., Jay, Z. J., Kohtz, A. J. & Hatzenpichler, R. Methylotrophic methanogenesis in the Archaeoglobi revealed by cultivation of Ca. Methanoglobus hypatiae from a Yellowstone hot spring. ISME J. 18, wrae026 (2024).

  21. Liu, Y.-F. et al. Long-term cultivation and meta-omics reveal methylotrophic methanogenesis in hydrocarbon-impacted habitats. Engineering 24, 264–275 (2023).

  22. Oren, A., Garrity, G. M., Parker, C. T., Chuvochina, M. & Trujillo, M. E. Lists of names of prokaryotic Candidatus taxa. Int. J. Syst. Evol. Microbiol. 70, 3956–4042 (2020).

    PubMed  Google Scholar 

  23. Zeikus, J., Ben-Bassat, A. & Hegge, P. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143, 432–440 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McKay, L. J., Klingelsmith, K. B., Deutschbauer, A. M., Inskeep, W. P. & Fields, M. W. Draft genome sequence of Methanothermobacter thermautotrophicus WHS, a thermophilic hydrogenotrophic methanogen from Washburn Hot Springs in Yellowstone National Park, USA. Microbiol. Resour. Announc. 10, e01157–01120 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, L., Dai, L., Li, X., Zhang, H. & Lu, Y. Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl. Environ. Microbiol. 77, 5212–5219 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balk, M., Weijma, J. & Stams, A. J. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 52, 1361–1368 (2002).

    CAS  PubMed  Google Scholar 

  27. Paulo, P. et al. Pathways of methanol conversion in a thermophilic anaerobic (55 C) sludge consortium. Appl. Microbiol. Biotechnol. 63, 307–314 (2003).

    CAS  PubMed  Google Scholar 

  28. Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol., 18, 241–256 (2020).

  29. Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal− bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, K. et al. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature https://doi.org/10.1038/s41586-024-07728-y (2024).

  31. Kohtz, A. J., Jay, Z. J., Lynes, M. M., Krukenberg, V. & Hatzenpichler, R. Culexarchaeia, a novel archaeal class of anaerobic generalists inhabiting geothermal environments. ISME Commun. 2, 1–13 (2022).

    Google Scholar 

  32. Major, T. A., Liu, Y. & Whitman, W. B. Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J. Bacteriol. 192, 4022–4030 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  35. Loh, H. Q., Hervé, V. & Brune, A. Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts–A genome-centric analysis. Front. Microbiol. 11, 635786 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Kröninger, L., Berger, S., Welte, C. & Deppenmeier, U. Evidence for the involvement of two heterodisulfide reductases in the energy‐conserving system of Methanomassiliicoccus luminyensis. FEBS J. 283, 472–483 (2016).

    PubMed  Google Scholar 

  37. Kröninger, L. et al. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane‐bound ferredoxin oxidation coupled to heterodisulfide reduction. FEBS J. 286, 3831–3843 (2019).

    PubMed  Google Scholar 

  38. Bryant, M., Campbell, L. L., Reddy, C. & Crabill, M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33, 1162–1169 (1977).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. McInerney, M. J. & Bryant, M. P. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl. Environ. Microbiol. 41, 346–354 (1981).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hwang, W. C. et al. LUD, a new protein domain associated with lactate utilization. BMC Bioinf. 14, 1–9 (2013).

    Google Scholar 

  41. Young, L. N. & Villa, E. Bringing Structure to Cell Biology with Cryo-Electron Tomography. Annu. Rev. Biophys. 52, 573–595 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Briegel, A. et al. Structural conservation of chemotaxis machinery across A rchaea and B acteria. Environ. Microbiol. Rep. 7, 414–419 (2015).

    CAS  PubMed  Google Scholar 

  43. Albers, S.-V. & Jarrell, K. F. The archaellum: an update on the unique archaeal motility structure. Trends Microbiol. 26, 351–362 (2018).

    CAS  PubMed  Google Scholar 

  44. Quax, T. E., Albers, S.-V. & Pfeiffer, F. Taxis in archaea. Emerg. Top. Life Sci. 2, 535–546 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baidya, A. K., Bhattacharya, S., Dubey, G. P., Mamou, G. & Ben-Yehuda, S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr. Opin. Microbiol. 42, 1–6 (2018).

    CAS  PubMed  Google Scholar 

  46. Liu, J. et al. Extracellular membrane vesicles and nanotubes in Archaea. microLife 2, uqab007 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Sivabalasarma, S. et al. Analysis of cell–cell bridges in Haloferax volcanii using electron cryo-tomography reveal a continuous cytoplasm and S-layer. Front. Microbiol. 11, 612239 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Brandis, A. & Thauer, R. K. Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. Microbiology 126, 249–252 (1981).

    CAS  Google Scholar 

  49. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).

    ADS  CAS  PubMed  Google Scholar 

  52. Stahl, D. A. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).

  53. Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytom.: J. Int. Soc. Anal. Cytol. 14, 136–143 (1993).

    CAS  Google Scholar 

  54. Daims, H. Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. Cold Spring Harb. Protoc. 2009, pdb. prot5253 (2009).

    PubMed  Google Scholar 

  55. Daims, H., Lücker, S. & Wagner, M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8, 200–213 (2006).

    CAS  PubMed  Google Scholar 

  56. Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome research 27, 824–834 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bushnell, B. BBMap: a fast, accurate, splice-aware aligner (Lawrence Berkeley National Lab., 2014).

  59. Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2, 1–18 (2014).

    Google Scholar 

  60. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS  PubMed  Google Scholar 

  61. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Miller, I. J. et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res. 47, e57–e57 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sieber, C. M. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 16, e1007981 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806 R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  69. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Google Scholar 

  70. Reichart, N. J. et al. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J. 14, 2851–2861 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Google Scholar 

  78. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  PubMed  Google Scholar 

  80. Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    CAS  PubMed  Google Scholar 

  81. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    CAS  PubMed  Google Scholar 

  82. Chen, I.-M. A. et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).

    ADS  CAS  PubMed  Google Scholar 

  83. Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).

    Google Scholar 

  84. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ai, G., Zhu, J., Dong, X. & Sun, T. Simultaneous characterization of methane and carbon dioxide produced by cultured methanogens using gas chromatography/isotope ratio mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 27, 1935–1944 (2013).

    ADS  CAS  PubMed  Google Scholar 

  86. Lagkouvardos, I. et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci. Rep. 6, 1–9 (2016).

    Google Scholar 

  87. Iancu, C. V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2006).

    CAS  PubMed  Google Scholar 

  88. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  89. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  90. Mastronarde, D. Correction for non‐perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J. Microsc. 230, 212–217 (2008).

    MathSciNet  CAS  PubMed  Google Scholar 

  91. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Google Scholar 

  93. Schaible, G. A., Kohtz, A. J., Cliff, J. & Hatzenpichler, R. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME Commun. 2, 52 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J. 13, 1933–1946 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Majed, N. & Gu, A. Z. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes. Environ. Sci. Technol. 44, 8601–8608 (2010).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded through awards by the NASA Exobiology programme (80NSSC19K1633 to R.H.) and the Simons and the Gordon and Betty Moore Foundations (award 737750 to R.H.). M.P. was supported by the European Research Council (CoG 101000232) and the NOMIS foundation. A.J.K. was supported in part by the Thermal Biology Institute and MSU’s Vice President’s Office of Research, Economic Development and Graduate Education. V.K. was supported in part by a grant from the NSF (MCB-1817428 to R.H.). A portion of this research was performed under the Community Sciences Program (proposal https://doi.org/10.46936/10.25585/60008108) and used resources at the DOE Joint Genome Institute (https://ror.org/04xm1d337), which is a DOE Office of Science User Facility operated under contract no. DE-AC02-05CH11231. Raman imaging was made possible by The Center for Biofilm Engineering Imaging Facility at MSU, which is supported by funding from the NSF MRI program (2018562), the M. J. Murdock Charitable Trust (202016116), the US Department of Defense (77369LSRIP) and the Montana Nanotechnology Facility (an NNCI member supported by NSF grant ECCS-2025391). MSU’s Confocal Raman microscope was acquired with support by the National Science Foundation (DBI-1726561) and the M. J. Murdock Charitable Trust (SR-2017331). We thank the US National Park Service for permitting work in YNP under permit number YELL-SCI-8010 and ScopeM for instrument access at ETH Zürich. We thank G. Chadwick for discussions on archaeal cell biology and physiology; L. Baranek for assistance with culture maintenance; C. Gauvin, A. Charbonneau and A. Kokhanovska for help with cryo-ET; M. Lynes for discussions that informed field sampling efforts; and M. Palmer for input on taxonomy. We thank W. Verstraete for allowing us to name this newly cultured methanogen after him.

Author information

Authors and Affiliations

Authors

Contributions

A.J.K. and R.H. developed the research project. A.J.K., V.K., N.P., M.P. and R.H. designed the experiments. A.J.K., V.K. and Z.J.J. conducted the field sampling. A.J.K. conducted cultivation, BONCAT, SIP, FISH, Raman and transcriptomic experiments, performed culture DNA and RNA extractions and phylogenetic analysis of hydrogenases. V.K. extracted DNA from LCB070 sediment, advised on cultivation and performed phylogenetic analysis of MCR sequences. Z.J.J. and A.J.K. analysed metagenomic data and performed phylogenetic analysis of genomes. A.J.K. performed the metabolic reconstruction with input from Z.J.J. and V.K. N.P. collected cryo-ET data. N.P. analysed cryo-ET data, with input from A.J.K., M.P. and R.H. R.H. and M.P. were responsible for funding and supervision of the project. A.J.K. and R.H. wrote the manuscript, which was then edited by all the authors.

Corresponding author

Correspondence to Roland Hatzenpichler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Image of hot spring LCB070 and diversity of Methanomethylicia MAGs recovered from the hot spring sediment metagenome.

A. Hot spring LCB070 in Yellowstone National Park. The arrow indicates the location where sediment samples were taken. B. Phylogenomic tree of Methanomethylicia, rooted with MAGs from the closely related lineage, Culexarchaeia31. MAGs recovered from the sediment metagenome are highlighted in green.

Extended Data Fig. 2 Pairwise comparison of 16S rRNA sequence identity and phylogeny and pairwise comparison of Methanomethylicia MAGs.

A. Pairwise percent sequence identity was calculated with BLASTn. B. Maximum likelihood phylogenetic tree of full length and partial 16S rRNA genes encoded in strain LCB70 and representative Methanomethylicia MAGs. Numbers at the nodes indicate bootstrap support, only values above 90 are shown. C. Pairwise average amino acid identity of MAGs (AAI, top) and average nucleotide identity (ANI, bottom) values (in %) were calculated by compareM and FastANI, respectively. Two MAGs from the closely related class Culexarchaeia31, were used as an outgroup. The two Verstraetearchaeota-affiliated MAGs reconstructed from the original hot spring (LCB070 bin14 and bin 23) have less than 75% ANI similarity to the genome of Ca. M. verstraetei strain LCB70.

Extended Data Fig. 3 Habitat distribution of Ca. M. verstraetei LCB70 and related species.

Sequences were identified by searching the NCBI SRA database using the IMNGS webserver with default settings. Graph is based on the presence of 16S rRNA gene sequences with >97% sequence identity to strain LCB70 across 664 public samples.

Extended Data Fig. 4 Growth of culture LCB70 on different carbon substrates and genomic context of putative lactate dehydrogenase and heterodisulfide reductase (HdrD) subunits.

A. Growth of culture LCB70 on 50 mM methanol (MeOH) and 50% hydrogen (H2) in the presence or absence of L-lactate (10 mM). Data symbols for methane are the mean (n = 3 biological replicates) ± s.d. Where not visible, the error bars are smaller than the symbol. B. Growth of culture LCB70 on 50 mM MeOH and 50% H2 with 10 mM of either lactate, pyruvate, or acetate. Data symbols for methane are the mean (n = 3 biological replicates) and error bars are one standard deviation. C. Transcriptional activity of LCB70 during growth on methanol and hydrogen with lactate, pyruvate, or acetate. Plotted are the mean ± s.d. (n = 3 biological replicates). Where not visible, the error bar is smaller than the symbol. Dashed lines represents the average TPM of all genes. D. Organization of putative lactate dehydrogenase genes, double slashes indicate the GlcD and LldG clusters are in different sections of the strain LCB70 genome. Sequences are indicated by arrows and distinct domains within the protein coding sequence are indicated by black bars. LUD, Lactate Utilization Domain.

Source Data

Extended Data Fig. 5 Diversity of Group 4 [NiFe] hydrogenases encoded by strain LCB70.

Maximum likelihood phylogenetic tree of group 4 [NiFe]-hydrogenases. The colors for the Ehb, Ehd, and Ehi clades match those in Fig. 3a. Circles at nodes indicate ultrafast bootstrap values higher than 95.

Extended Data Fig. 6 Genomic organization, expression, and occurrence of archaella and chemoreceptors within tomograms.

A. Organization of archaella (yellow) and chemotaxis gene clusters (blue). Hypothetical proteins (Hyp.) are shown in gray. MCP, Methyl-accepting chemotaxis proteins. PAS domain, Per-Arnt-Sim domain. B. Expression profile of archaella and chemotaxis genes for cultures grown on methanol and hydrogen and either lactate, pyruvate, or acetate as the carbon source (n = 3 biological replicates). Plotted are the mean values +/− SD. Where not visible, the error bar is smaller than the symbol. Dashed line represents the average TPM of all genes. C. Occurrence of archaella and chemoreceptor arrays in tomograms of strain LCB70. Note that due to differences in contrast between the tomograms, estimates of chemoreceptor arrays may be slightly underestimated.

Source Data

Extended Data Fig. 7 Cell biology of strain LCB70.

A, B. Two tomographic slices of the same archaellated LCB70 cell. C. A LCB70 cell with semi-ordered unidentified filamentous structures. A zoomed-in view is shown in the inset. D. A tomographic slice of a cell with putative storage granules. E,F. Examples of potentially dividing LCB70 cells. G. Variation in LCB70 cell diameters (n = 55 cells). The center line represents the mean cell diameter and whiskers represent +/− SD. For all tomographic slices the thickness is 18.04 nm. Scale bars, 200 nm; 25 nm for the inset. H. Raman spectra of the fingerprint region (400–2,000 cm−1) of 18 LCB70 cells. Black line shows the average and pink shaded area is one standard deviation. Gray shaded regions are marker regions for glycogen (478–484, and 840–860 cm−1)94. I. Transcriptional activity of genes involved in glycogen metabolism for cells grown on methanol and hydrogen with either lactate, pyruvate, or acetate as carbon sources (n = 3 biological replicates each). Data are presented as mean values +/− SD. Where not visible, the error bar is smaller than the symbol. Dashed lines indicate the average TPM for each treatment. For full gene names see Supplementary Table 4.

Source Data

Extended Data Fig. 8 Representative tomograms of LCB70 cells grown with different carbon sources.

A. Tomographic slices of LCB70 cells grown on 50 mM methanol and 50% hydrogen with 10 mM lactate; B. 10 mM lactate with BES treatment; C. 10 mM pyruvate; D. 10 mM acetate. Scale bar, 200 nm. The thickness of tomographic slices is 18.04 nm.

Extended Data Fig. 9 Examples of cell aggregates in culture LCB70.

A,B. Representative epifluorescence images of the LCB70 culture showing large aggregates. Cells are stained with the general nucleic acid stain DAPI (blue), and the Methanomethylicaceae-specific FISH probe Msur657 (green), and the general archaeal probe Arch915 (red). LCB70 cells bind to both the Msur657 and Arch915 probes, appearing orange. Scale bars, 5 µm. Shown are representative micrographs from 3 independent biological replicates.

Extended Data Fig. 10 Cell-cell connections between LCB70 cells.

A, B. Two examples of interactions between LCB70 cells. Cell-cell bridges without (panel A) or with S-layer (panel B) formed from the cytoplasmic membrane connecting two cells. C,D. Tomographic slice (C) and corresponding model (D) of a cell-cell bridge without a surrounding S-layer. Structures in black are interpreted to either represent virus-like particles or protrusions of the cell membrane. E. Barplot represents the variation in length (n = 4 tomograms), diameter (n = 4 tomograms), and S-layer diameter of the tube connection between cells (n = 3 tomograms), from which only one tube is fully covered by S-layer, two are covered only in area of the cell contact, and one is not covered at all in S-layer. The number in the bar is the mean and error bars represent the standard deviation. For all tomographic slices, the scale bar is 200 nm and the thickness is 18.04 nm. F. A zoomed out view of the model of a junction between the three cells shown in Fig. 4c. S-layer colored in yellow, cytoplasmic membrane in blue, putative ribosomes in red, and thin filaments in green. Scale bars, 200 nm.

Source Data

Supplementary information

Supplementary Information

Supplementary Results and Discussion, including the complete etymology of Methanosuratincola verstraetei strain LCB70 and supplemental discussion on lactate metabolism.

Reporting Summary

Supplementary Tables

This file contains Supplementary Tables 1–6.

Supplementary Video 1

The video shows tomographic slices through a Ca. M. verstraetei LCB70 cell followed by the corresponding 3D model representation (same dataset as shown in Fig. 4a,b). In the 3D model the colours refer to: S-layer (yellow), cytoplasmic membrane (blue), putative ribosomes (red), archaella (dark pink), putative virus-like particles (cyan), chemotaxis receptor arrays (pink), and unidentified filamentous structures (grey).

Supplementary Video 2

The video shows tomographic slices through a Ca. M. verstraetei LCB70 cell (same dataset as shown in Fig. 4c).

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohtz, A.J., Petrosian, N., Krukenberg, V. et al. Cultivation and visualization of a methanogen of the phylum Thermoproteota. Nature 632, 1118–1123 (2024). https://doi.org/10.1038/s41586-024-07631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07631-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology