Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stronger El Niños reduce tropical forest arthropod diversity and function

Abstract

There is ongoing debate about the vulnerability of arthropods to climate change1,2. Long-term impacts of climate change on arthropod communities could manifest through short-term weather patterns3. Arthropods in the tropics are hyper-diverse4,5 and contribute many crucial ecosystem functions6,7, but are comparatively less studied than in temperate regions1,8,9. Tropical forest arthropods and the functions that they provide may be vulnerable to intensified El Niño events under climate change10,11,12. Here we perform time-series analysis of data from primary tropical forests, which reveal long-term declines in arthropod diversity and function that were linked to El Niño occurrence. In the Americas, species losses correlated with El Niño sensitivity, and abundant species fluctuated according to feeding traits and level of ecological specialization. Parallel declines in butterflies in Southeast Asia suggested that impacts spanned continents. Predicted arthropod diversity changes correlated with observed rates of invertebrate-mediated decomposition and leaf herbivory, which were oscillating and crashing, respectively, across the tropics. Our analyses suggest that an intensified El Niño immediately threatens tropical forest arthropods and the ecosystem functions that they provide. The broader consequences remain unknown, but such widespread changes could fundamentally alter tropical forest ecosystems13. Long-term monitoring of arthropod diversity and forest functioning across the tropics is paramount, as is researching the potential mechanisms that underly this novel threat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Predicted changes in generalized arthropod diversity across forests in the tropical Americas.
Fig. 2: Comparison of predicted Lepidoptera diversity changes between the tropical Americas and Asia, and between the superfamily Papilionoidea and other superfamilies.
Fig. 3: Predicted changes in forest invertebrate functions over recent decades.
Fig. 4: Weighted Spearman’s correlation coefficients between predicted diversity changes in arthropod orders and observed annual mean rates of invertebrate contribution to decomposition and leaf herbivory in the tropical Americas.

Similar content being viewed by others

Data availability

All compiled datasets associated with this analysis are available from Zenodo at https://doi.org/10.5281/zenodo.14863366 (ref. 82).

Code availability

All code associated with this analysis is available from Zenodo at https://doi.org/10.5281/zenodo.15428848 (ref. 83).

References

  1. Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article  Google Scholar 

  3. Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).

    Article  PubMed  ADS  Google Scholar 

  4. Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Stork, N. E., Boyle, M. J. W., Wardhaugh, C. & Beaver, R. A. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Divers. 17, 1156–1166 (2024).

    Article  Google Scholar 

  6. Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article  PubMed  ADS  Google Scholar 

  9. van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  ADS  Google Scholar 

  12. Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

    Article  ADS  Google Scholar 

  13. Boyle, M. J. W. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. 1, 315–331 (2025).

    Article  Google Scholar 

  14. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).

    Article  Google Scholar 

  17. Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).

    Article  PubMed  Google Scholar 

  19. Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  ADS  Google Scholar 

  20. Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article  ADS  Google Scholar 

  21. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) 65–86 (American Geophysical Union, 2020).

  23. Vencl, F. V. & Srygley, R. B. El Niño oscillations impact anti-predator defences to alter survival of an herbivorous beetle in a neotropical wet forest. J. Trop. Ecol. 39, e34 (2023).

    Article  Google Scholar 

  24. França, F. M. et al. El Niño impacts on human-modified tropical forests: consequences for dung beetle diversity and associated ecological processes. Biotropica 52, 252–262 (2020).

    Article  Google Scholar 

  25. Roubik, D. W. Ups and downs in pollinator populations: When is there a decline?. Conserv. Ecol. 5, 2 (2001).

    Google Scholar 

  26. Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31, 321–336 (1999).

    Article  Google Scholar 

  27. Schowalter, T. D. & Ganio, L. M. Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo. Ecol. Entomol. 24, 191–201 (2001).

    Article  Google Scholar 

  28. Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).

    Article  Google Scholar 

  29. Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).

    Article  Google Scholar 

  31. Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).

    Article  Google Scholar 

  32. Bonebrake, T. C. et al. Warming threat compounds habitat degradation impacts on a tropical butterfly community in Vietnam. Glob. Ecol. Conserv. 8, 203–211 (2016).

    Google Scholar 

  33. Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    Article  PubMed  Google Scholar 

  34. Sánchez González, I. et al. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 14, e4495 (2023).

    Article  Google Scholar 

  35. Fox, B. J. Niche parameters and species richness. Ecology 62, 1415–1425 (1981).

    Article  Google Scholar 

  36. Cleary, D. F. R. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135, 313–321 (2003).

    Article  PubMed  ADS  Google Scholar 

  37. Detto, M., Wright, S. J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat. Commun. 9, 913 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  38. Petráková, L. et al. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci. Rep. 5, 14013 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Yin, Z.-W., Cai, C.-Y., Huang, D.-Y. & Li, L.-Z. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tsang, T. P. N., Ponisio, L. C. & Bonebrake, T. C. Increasing synchrony opposes stabilizing effects of species richness on terrestrial communities. Divers. Distrib. 29, 849–861 (2023).

    Article  Google Scholar 

  42. Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84 (2014).

    Article  PubMed  Google Scholar 

  43. Staab, M. et al. Insect decline in forests depends on species’ traits and may be mitigated by management. Commun. Biol. 6, 338 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Prather, C. M. & Belovsky, G. E. Herbivore and detritivore effects on rainforest plant production are altered by disturbance. Ecol. Evol. 9, 7652–7659 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 27, 305–335 (1996).

    Article  Google Scholar 

  46. Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    Article  ADS  Google Scholar 

  47. Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A. P. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS ONE 2, e360 (2007).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).

    Article  PubMed  Google Scholar 

  49. Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Eppley, T. M. et al. Tropical field stations yield high conservation return on investment. Conserv. Lett. 60, e13007 (2024).

    Article  Google Scholar 

  55. Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  57. Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Article  Google Scholar 

  58. van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    Article  PubMed  ADS  Google Scholar 

  59. R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).

  60. Oksanen, J. et al. Vegan: community ecology package (2022).

  61. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  62. Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article  MathSciNet  Google Scholar 

  63. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  64. Bailey, P. & Emad, A. wCorr: Weighted correlations cran.r-project.org/web/packages/wCorr/index.html (2023).

  65. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  66. Wilke, C. & Wiernik, B. ggtext: Improved text rendering support for ‘ggplot2’ cran.r-project.org/web/packages/ggtext/index.html (2022).

  67. Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’ cran.r-project.org/web/packages/cowplot/index.html (2024).

  68. Simpson, G. gratia: Graceful ggplot-based graphics and other functions for GAMs fitted using mgcv cran.r-project.org/web/packages/gratia/index.html (2024).

  69. Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).

    Article  MathSciNet  Google Scholar 

  70. Box G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Holden-Day, 1994).

  71. Jones, R. H. Longitudinal Data with Serial Correlation: A State-Space Approach (Chapman and Hall, 1993).

  72. Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Stat. Comput. 15, 267–280 (2005).

    Article  MathSciNet  Google Scholar 

  73. Wootton, K. L. & Stouffer, D. B. Species’ traits and food-web complexity interactively affect a food web’s response to press disturbance. Ecosphere 7, e01518 (2016).

    Article  Google Scholar 

  74. Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381.e3 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. GBIF.Org user. Occurrence download 29229815. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.6C2QQG (2025).

  76. GBIF.Org user. Occurrence download 2557474. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.R6MNY5 (2025).

  77. GBIF.Org user. Occurrence download 241682722. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.5KF5NR (2025).

  78. GBIF.Org user. Occurrence download 305626069. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.JPEWKC (2025).

  79. GBIF.Org user. Occurrence download 66151475. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4S7VFE (2025).

  80. GBIF.Org user. Occurrence download 207807231. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4E6SKK (2025).

  81. GBIF.Org user. Occurrence download 379594148. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.2TP7Y3 (2025).

  82. Sharp, A. C. et al. Compiled datasets for “Stronger El Niños reduce tropical forest arthropod diversity and function” [Data set]. Zenodo https://doi.org/10.5281/zenodo.14863367 (2025).

  83. Sharp, A. C. dradamsharp/Stronger-El-Ninos-reduce-tropical-forest-arthropod-diversity-and-function: analysis for ‘Stronger El Niños reduce tropical forest arthropod diversity and function’ (Release). Zenodo https://doi.org/10.5281/zenodo.15428849 (2025).

Download references

Acknowledgements

This work was supported by the RGC Collaborative Research Fund (C7048-22GF) and the NSFC National Excellent Young Scientist Fund (AR215206). Araneae icon created in BioRender. Sharp, A. (2025) https://BioRender.com/590mota. Blattodea icon created in BioRender. Sharp, A. (2025) https://BioRender.com/agtujv6. Coleoptera icon created in BioRender. Sharp, A. (2025) https://BioRender.com/wq2wj8t. Diptera icon created in BioRender. Sharp, A. (2025) https://BioRender.com/o1ivkt7. Hemiptera icon created in BioRender. Sharp, A. (2025) https://BioRender.com/9k89sl6. Hymenoptera icon created in BioRender. Sharp, A. (2025) https://BioRender.com/y5wejdo. Lepidoptera (Papilioinoidea) icon created in BioRender. Sharp, A. (2025) https://BioRender.com/khfl547. Lepidoptera (non-Papilioinoidea) icon created in BioRender. Sharp, A. (2025) https://BioRender.com/cnwyo1o.

Author information

Authors and Affiliations

Authors

Contributions

A.C.S. conceived, designed and conducted the analysis and wrote the first draft of this article. M.J.W.B. formulated hypotheses on El Niño impacts and sourced arthropod diversity datasets. Y.G. conducted the literature search and compiled data on leaf herbivory. X.Z. conducted the literature search and compiled data on invertebrate contribution to decomposition. T.C.B., R.L.K. and N.E.S. contributed knowledge to the text. L.A.A. secured funding for and led the wider project to which this analysis belongs. All authors contributed to writing of the Article.

Corresponding authors

Correspondence to Michael J. W. Boyle or Louise A. Ashton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Roel van Klink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Summaries of Generalized Additive Mixed Models (GAMMs) predicting arthropod diversity changes through time in the tropical Americas.

a. Parametric coefficient estimates and smooth fits. Estimates are on the log-link scale. The values in brackets indicate the Tweedie power parameter, p. The time scale adjustment is an additive component to the long-term gradient that controlled for inconsistent temporal scale between time series datasets – some time series reported taxon occurrences at monthly intervals and other time series at yearly intervals. The additional adjustment parameter allowed more flexible model fitting to yearly-scale time series, and it is omitted at the later prediction stage. The Oceanic Niño Index, ONI, smooth described short-term fluctuations in diversity attributable to climate oscillations. Richness’s of Araneae, Coleoptera, Hemiptera and Lepidoptera were predicted to be in significant long-term decline. Inverse Simpson’s diversity indices of Araneae, Blattodea and Coleoptera were predicted to be in significant long-decline, while Inverse Simpson’s diversity index of Diptera was predicted to increase significantly. b. Visualizations of ONI smooth functions. Translucent bands represent 95% confidence intervals, derived from standard errors. The ONI explained a significant amount of short-term temporal variation in richness’s of Coleoptera, Hymenoptera and Lepidoptera. The ONI also explained a significant amount of short-term temporal variation in the Inverse Simpson’s diversity index of Blattodea, Hemiptera and Lepidoptera.

Extended Data Fig. 2 Summaries of GAMMs predicting Lepidoptera diversity changes through time in the tropical Americas and Asia.

a. Parametric coefficient estimates and smooth fits. Estimates are on the log-link scale. As in the models of order-level diversity change, the time scale adjustment controls for differences in the temporal scale of reported taxon occurrences between time series. Adjustment was unnecessary for non-Papilionoidea superfamilies (moths) in the Americas as all utilized datasets were of monthly temporal intervals. Also as before, the ONI smooth described short-term fluctuations in diversity attributable to climate oscillations. The Richness’s of Papilionoidea (butterflies) in the Americas and Asia and other Lepidoptera superfamilies in the Americas were predicted to be in significant long-term decline. Inverse Simpson’s diversity indices for both Papilionoidea and non-Papilionoidea Lepidoptera in the Americas were similarly predicted to be in significant long-term decline, but not the Papilionoidea in Asia. b. Visualizations of ONI smooth functions. Translucent bands represent 95% confidence intervals, derived from standard errors. The Richness’s of Papilionoidea (butterflies) and other Lepidoptera superfamilies (moths) in the Americas declined significantly during El Niño compared with La Niña, as did the Inverse Simpson’s index of non-Papilionoidea. There was no significant equivalent effect in Lepidoptera time series from Asia, although data from that region were lesser in temporal coverage and did not coincide with strong El Niño events.

Extended Data Fig. 3 Order-level relationships between predicted arthropod El Niño responses and long-term diversity changes.

El Niño Response describes the short-term change in diversity (standard deviations, Z) from moderate La Niña conditions (ONI = −1.1) to strong El Niño conditions (ONI = 1.9). Horizontal and vertical lines represent 95% confidence intervals and are derived from bootstrapped (n = 10,000) GAMM predictions.

Extended Data Table 1 Model selection of invertebrate decomposition and herbivory models via Akaike Information Criterion (AIC)
Extended Data Table 2 Summaries of parametric coefficient estimates and smooth fits for GAMMs predicting invertebrate contributions to decomposition and herbivory rate through time
Extended Data Table 3 Summaries of Pearson’s correlations between annual mean invertebrate contribution to decomposition rates in the Americas, Asia and Africa
Extended Data Table 4 Summaries of weighted Spearman’s correlations between predicted arthropod diversity and observed mean annual invertebrate contribution to decomposition rate in the tropical Americas
Extended Data Table 5 Summaries of weighted Pearson’s correlations between observed mean annual leaf herbivory rate and time (years after the year 2000)
Extended Data Table 6 Summaries of weighted Spearman’s rank correlations between predicted arthropod diversity and observed mean annual leaf herbivory rate in the tropical Americas

Supplementary information

Supplementary Information

This file contains two supplementary figures and three supplementary tables.

Reporting Summary

Peer Review file

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, A.C., Boyle, M.J.W., Bonebrake, T.C. et al. Stronger El Niños reduce tropical forest arthropod diversity and function. Nature 645, 946–951 (2025). https://doi.org/10.1038/s41586-025-09351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09351-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing