Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Uncovering the role of integrated stress in Alzheimer’s disease through single-cell and transcriptomic analysis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 January 2026

Uncovering the role of integrated stress in Alzheimer’s disease through single-cell and transcriptomic analysis

  • Ning Sheng2 na1,
  • Hong-Yan Wang2 na1,
  • Kun Song2 na1,
  • Yong Zheng2,
  • Zi-Ying Zong2,
  • Jin-Wen Ge3,
  • Da-Hua Wu  ORCID: orcid.org/0000-0002-0943-00371 &
  • …
  • Ya-Han Wang  ORCID: orcid.org/0000-0002-1160-82361 

Scientific Reports , Article number:  (2026) Cite this article

  • 1094 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neurology
  • Neuroscience

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disorder; however, its molecular complexity remains poorly understood. Single-cell analysis can reveal the molecular changes in AD in different types of brain cells. In this study, we integrated single-cell sequencing and transcriptome data to explore the molecular mechanism of integrated stress response (ISR) in AD. Analysis of the GSE264648 (49 cases) and GSE48350 (253 cases) datasets showed that the integrated stress response (ISR) activity of endothelial cells in patients with AD was significantly increased compared with normal control group. Six key genes (BTG1, EPB41L4A, HERPUD1, SLC3A2, SLC7A11, and SLC7A5) were screened by combining the Least Absolute Shrinkage and Selection Operator (LASSO) regression and the random forest algorithm. Urine test for β-amyloid protein, Clinical Dementia Rating, modified Hachinski Ischemia Scale, Hamilton Depression Scale, Hamilton Anxiety Scale and head magnetic resonance imaging were used to screen cilinical subjects, and then verified the six key genes in their blood samples. These key genes are enriched in inflammatory pathways such as NF-κB and TNF, and are closely related to immune cell infiltration (e.g., M2 macrophages and neutrophils). This research also revealed the association between key and core genes of AD (e.g., APOE) and their clinical predictive value, providing new clues for mechanistic research and targeted therapy of AD.

Similar content being viewed by others

Monocyte inflammation and resilience to Alzheimer’s disease: novel genetic risk genes identified by transcriptome-wide association study

Article Open access 18 November 2025

Identification of novel risk genes for Alzheimer’s disease by integrating genetics from hippocampus

Article Open access 11 November 2024

Identification and validation of oxidative stress and immune-related hub genes in Alzheimer’s disease through bioinformatics analysis

Article Open access 12 January 2023

Data availability

The datasets generated and/or analyzed during the current study are not publicly available because they protect patient privacy, but are available from the corresponding author upon reasonable request.

References

  1. Rajendran, K. & Krishnan, U. M. Biomarkers in alzheimer’s disease. Clin. Chim. Acta. 562, 119857. https://doi.org/10.1016/j.cca.2024.119857 (2024).

    Google Scholar 

  2. Preethy, H. A., Rajendran, K., Sukumar, A. J. & Krishnan, U. M. Emerging paradigms in alzheimer’s therapy. Eur. J. Pharmacol. 981, 176872. https://doi.org/10.1016/j.ejphar.2024.176872 (2024).

    Google Scholar 

  3. Cummings, J., Osse, A. M. L., Cammann, D., Powell, J. & Chen, J. Anti-amyloid monoclonal antibodies for the treatment of alzheimer’s disease. BioDrugs 38 (1), 5–22. https://doi.org/10.1007/s40259-023-00633-2 (2024).

    Google Scholar 

  4. Newby, D. et al. Artificial intelligence for dementia prevention. Alzheimers Dement. 19 (12), 5952–5969. https://doi.org/10.1002/alz.13463 (2023).

    Google Scholar 

  5. Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell. 75 (1), 7–12. https://doi.org/10.1016/j.molcel.2019.05.003 (2019).

    Google Scholar 

  6. Giladi, A. & Amit, I. Single-cell genomics: A stepping stone for future immunology discoveries. Cell 172 (1–2), 14–21. https://doi.org/10.1016/j.cell.2017.11.011 (2018).

    Google Scholar 

  7. Zhang, S., Li, X., Lin, J., Lin, Q. & Wong, K. C. Review of single-cell RNA-seq data clustering for cell-type identification and characterization. RNA 29 (5), 517–530. https://doi.org/10.1261/rna.078965.121 (2023).

    Google Scholar 

  8. Su, M. et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil Med. Res. 9 (1), 68. https://doi.org/10.1186/s40779-022-00434-8 (2022). Published online.

    Google Scholar 

  9. Lieberman, B. et al. Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq. J. Transl Genet. Genom. 5, 1–21. https://doi.org/10.20517/jtgg.2020.51 (2021).

    Google Scholar 

  10. Birnbaum, K. D. Power in numbers: single-cell RNA-seq strategies to dissect complex tissues. Annu. Rev. Genet. 52, 203–221. https://doi.org/10.1146/annurev-genet-120417-031247 (2018).

    Google Scholar 

  11. Singh, A. & Hermann, B. P. Bulk and single-cell RNA-Seq analyses for studies of spermatogonia. Methods Mol. Biol. 2656, 37–70. https://doi.org/10.1007/978-1-0716-3139-3_4 (2023).

    Google Scholar 

  12. Fishman, L. et al. Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq. Nat. Commun. 15 (1), 3104. https://doi.org/10.1038/s41467-024-47290-9 (2024).

    Google Scholar 

  13. Fancy, N. N. et al. Characterisation of premature cell senescence in alzheimer’s disease using single nuclear transcriptomics. Acta Neuropathol. 147 (1), 78. https://doi.org/10.1007/s00401-024-02727-9 (2024).

    Google Scholar 

  14. Bohai Feng, D. et al. Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma. NPJ Precis Oncol. 9, 57. https://doi.org/10.1038/s41698-025-00844-6 (2025).

    Google Scholar 

  15. Voloh, B., Watson, M. R., König, S. & Thilo Womelsdorf. MAD saccade: statistically robust saccade threshold estimation via the median absolute deviation. J. Eye Mov. Res. 12 (8). https://doi.org/10.16910/jemr.12.8.3 (2019).

  16. Soumita Seth, S., Mallik, T., Bhadra, Z. & Zhao Dimensionality reduction and Louvain agglomerative hierarchical clustering for Cluster-Specified frequent biomarker discovery in Single-Cell sequencing data. Front. Genet. 13, 828479. https://doi.org/10.3389/fgene.2022.828479 (2022).

    Google Scholar 

  17. Kotb Abdelmohsen, K. et al. Identification of senescent cell subpopulations by CITE‐seq analysis. Aging Cell. 23 (11), e14297. https://doi.org/10.1111/acel.14297 (2024).

    Google Scholar 

  18. Zhang, T. Q., Chen, Y., Liu, Y., Lin, W. H. & Wang, J. W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun. 12, 2053. https://doi.org/10.1038/s41467-021-22352-4 (2021).

  19. Pei, Y. et al. Aging and head and neck cancer insights from single cell and spatial transcriptomic analyses. Discov. Oncol. 15, 801. https://doi.org/10.1007/s12672-024-01672-z (2024).

  20. Yuhan Hao, S. et al. Integrated analysis of multimodal single-cell data. Cell 184 (13), 3573–3587e29. https://doi.org/10.1016/j.cell.2021.04.048 (2021).

    Google Scholar 

  21. Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51 (D1), D870–D876. https://doi.org/10.1093/nar/gkac947 (2023).

    Google Scholar 

  22. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172. https://doi.org/10.1038/s41590-018-0276-y (2019).

    Google Scholar 

  23. Rachael, G. et al. Clustering-independent Estimation of cell abundances in bulk tissues using single-cell RNA-seq data. Cell. Rep. Methods. 18 (11), 100905. https://doi.org/10.1016/j.crmeth.2024.100905 (2024).

    Google Scholar 

  24. Zun Mao, Z. et al. Mitotic catastrophe heterogeneity: implications for prognosis and immunotherapy in hepatocellular carcinoma. Front. Immunol. 15, 1409448. https://doi.org/10.3389/fimmu.2024.1409448 (2024).

    Google Scholar 

  25. Craven, K. E., Gökmen-Polar, Y. & Badve, S. S. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci. Rep. 11 (1), 4691. https://doi.org/10.1038/s41598-021-83913-7 (2021).

    Google Scholar 

  26. Yingying Shi, Z., Chen, L., Huang, Y., Gong & Lu Shi. A network pharmacology approach to reveal the key ingredients in Scrophulariae Radix (SR) and their effects against Alzheimer’s disease. Heliyon 10 (3), e24785. https://doi.org/10.1016/j.heliyon.2024.e24785 (2024).

  27. Jing Du, Y. et al. Single-cell transcriptomics reveal the prognostic roles of epithelial and T cells and DNA methylation-based prognostic models in pancreatic cancer. Clin. Epigenetics. 16, 188. https://doi.org/10.1186/s13148-024-01800-0 (2024).

    Google Scholar 

  28. Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer‘s disease. Alzheimers Dement. 14 (4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018 (2018).

    Google Scholar 

  29. Gu, B. J. et al. Fragments of amyloid precursor protein in urine are novel and practical biomarkers for early screening of dementia. Alzheimers Dem. 19 (S14), e075205. https://doi.org/10.1002/alz.075205 (2023).

    Google Scholar 

  30. Zhang, P. L. D. K. X. et al. Temporal Effects of disease signature genes and core mechanisms in the hyperacute phase of acute ischemic stroke: a bioinformatics analysis and experimental validation. Mediators Inflamm. 2025 6808184. https://doi.org/10.1155/mi/6808184 (2025).

  31. Han, S. et al. Mitochondrial integrated stress response controls lung epithelial cell fate. Nature 620 (7975), 890–897. https://doi.org/10.1038/s41586-023-06423-8 (2023).

    Google Scholar 

  32. Xu, Y., Lin, P., Zhu, Y., Zhang, Q. & Zhou, J. Applying integrated transcriptome and single-cell sequencing analysis to develop a prognostic signature based on M2-like tumor-associated macrophages for breast cancer. Discov Oncol. 16 (1), 389. https://doi.org/10.1007/s12672-025-02161-7 (2025).

    Google Scholar 

  33. Scheltens, P. et al. Alzheimer‘s disease. Lancet 397 (10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4 (2021).

    Google Scholar 

  34. Alzheimer’s Association report. 2024 alzheimer’s disease facts and figures. Alzheimers Dement. 20 (5), 3708–3821. https://doi.org/10.1002/alz.13809 (2024).

    Google Scholar 

  35. Sargurupremraj, M. et al. Genetic complexities of cerebral small vessel disease, blood pressure, and dementia. JAMA Netw. Open. 7 (5), e2412824. https://doi.org/10.1001/jamanetworkopen.2024.12824 (2024). Published online.

    Google Scholar 

  36. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 396 (10248), 413–446. https://doi.org/10.1016/S0140-6736(20)30367-6 (2020).

    Google Scholar 

  37. Volloch, V. & Rits-Volloch, S. Alzheimer’s is a multiform disease of sustained neuronal integrated stress response driven by the C99 fragment generated independently of AbetaPP; proteolytic production of Abeta is suppressed in AD-Affected neurons: evolution of a theory. Int. J. Mol. Sci. 26 (9), 4252. https://doi.org/10.3390/ijms26094252 (2025).

    Google Scholar 

  38. Ceccarelli, M. et al. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: involvement of Cyclin D1. Dev. Biol. 408 (1), 109–125. https://doi.org/10.1016/j.ydbio.2015.10.007 (2015).

    Google Scholar 

  39. Cooper, C., Moon, H. Y. & van Praag, H. On the run for hippocampal plasticity. Cold Spring Harb Perspect. Med. 8 (4), a029736. https://doi.org/10.1101/cshperspect.a029736 (2018).

    Google Scholar 

  40. Kempermann, G. Adult neurogenesis: an evolutionary perspective. Cold Spring Harb Perspect. Biol. 8 (2), a018986. https://doi.org/10.1101/cshperspect.a018986 (2015).

    Google Scholar 

  41. Jung, H. Y. et al. Age-associated alterations in constitutively expressed cyclooxygenase-2 immunoreactivity and protein levels in the hippocampus. Mol. Med. Rep. 15 (6), 4333–4337. https://doi.org/10.3892/mmr.2017.6512 (2017).

    Google Scholar 

  42. Liao, W. et al. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Clin. Transl Med. 12 (2), e699. https://doi.org/10.1002/ctm2.699 (2022).

    Google Scholar 

  43. Yang, T. et al. Down-regulation of EPB41L4A-AS1 mediated the brain aging and neurodegenerative diseases via damaging synthesis of NAD+ and ATP. Cell. Biosci. 11 (1), 192. https://doi.org/10.1186/s13578-021-00705-2 (2021).

    Google Scholar 

  44. Xu, Y., Zhang, S. & Zheng, H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy 15 (4), 583–598. https://doi.org/10.1080/15548627.2018.1532258 (2019).

    Google Scholar 

  45. Chai, W. et al. Elevated exosome-transferrable LncRNA EPB41L4A-AS1 in CD56bright NK cells is responsible for the impaired NK function in neuroblastoma patients by suppressing cell Glycolysis. Clin. Immunol. 250, 109322. https://doi.org/10.1016/j.clim.2023.109322 (2023).

    Google Scholar 

  46. Liao, M. et al. LncRNA EPB41L4A-AS1 regulates Glycolysis and Glutaminolysis by mediating nucleolar translocation of HDAC2. EBiomedicine 41, 200–213. https://doi.org/10.1016/j.ebiom.2019.01.035 (2019).

    Google Scholar 

  47. Schulz, J. et al. Conserved cytoplasmic domains promote Hrd1 ubiquitin ligase complex formation for ER-associated degradation (ERAD). J. Cell. Sci. 130 (19), 3322–3335. https://doi.org/10.1242/jcs.206847 (2017).

    Google Scholar 

  48. Américo-Da-Silva, L. et al. A new role for HERPUD1 and ERAD activation in osteoblast differentiation and mineralization. FASEB J. 32 (9), 4681–4695. https://doi.org/10.1096/fj.201701229RR (2018).

    Google Scholar 

  49. Leitman, J. et al. Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD. Mol. Biol. Cell. 25 (7), 1050–1060. https://doi.org/10.1091/mbc.E13-06-0350 (2014).

    Google Scholar 

  50. Joly, P. et al. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in alpha 1-antitrypsin deficiency. PLOS One. 12 (6), e0179369. https://doi.org/10.1371/journal.pone.0179369 (2017).

    Google Scholar 

  51. , L. T. M. et al. Deletion of Herpud1 enhances Heme oxygenase-1 expression in a mouse model of Parkinson‘s disease. Parkinsons Dis. 2016 (6163934). https://doi.org/10.1155/2016/6163934 (2016).

  52. Lin, H. et al. MicroRNA-384-mediated Herpud1 upregulation promotes angiotensin II-induced endothelial cell apoptosis. Biochem. Biophys. Res. Commun. 488 (3), 453–460. https://doi.org/10.1016/j.bbrc.2017.05.035 (2017).

    Google Scholar 

  53. Chan, S. L. et al. Herp stabilizes neuronal Ca2 + homeostasis and mitochondrial function during Endoplasmic reticulum stress. J. Biol. Chem. 279 (27), 28733–28743. https://doi.org/10.1074/jbc.M404272200 (2004).

    Google Scholar 

  54. Kwon, K. et al. Adaptive cellular response of the substantia Nigra dopaminergic neurons upon age-dependent iron accumulation. Aging Cell. 21 (9), e13694. https://doi.org/10.1111/acel.13694 (2022).

    Google Scholar 

  55. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell. Biol. 21 (8), 421–438. https://doi.org/10.1038/s41580-020-0250-z (2020).

    Google Scholar 

  56. Bröer, S. Amino acid transporters as targets for cancer therapy: why, where, when, and how. Int. J. Mol. Sci. 21 (17), 6156. https://doi.org/10.3390/ijms21176156 (2020).

    Google Scholar 

  57. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520 (7545), 57–62. https://doi.org/10.1038/nature14344 (2015).

    Google Scholar 

  58. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7 (2), 99–109. https://doi.org/10.1038/nrmicro2070 (2009).

    Google Scholar 

  59. Leu, J. I. J., Murphy, M. E. & George, D. L. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc. Natl. Acad. Sci. U S A. 116 (17), 8390–8396. https://doi.org/10.1073/pnas.1821277116 (2019).

    Google Scholar 

  60. Koppula, P., Zhang, Y., Zhuang, L. & Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. (Lond). 38 (1), 12. https://doi.org/10.1186/s40880-018-0288-x (2018).

    Google Scholar 

  61. Liu, H. et al. Identification of SLC3A2 as a potential therapeutic target of osteoarthritis involved in ferroptosis by integrating bioinformatics, clinical factors and experiments. Cells 11 (21), 3430. https://doi.org/10.3390/cells11213430 (2022).

    Google Scholar 

  62. Colle, R. et al. PPAR-γ agonists for the treatment of major depression: a review. Pharmacopsychiatry 50 (2), 49–55. https://doi.org/10.1055/s-0042-120120 (2017).

    Google Scholar 

  63. Geng, L., Zhang, T., Liu, W. & Chen, Y. Inhibition of miR-128 abates Aβ-Mediated cytotoxicity by targeting PPAR-γ via NF-κB inactivation in primary mouse cortical neurons and Neuro2a cells. Yonsei Med. J. 59 (9), 1096–1106. https://doi.org/10.3349/ymj.2018.59.9.1096 (2018).

    Google Scholar 

  64. Varrone, A. & Nordberg, A. Molecular imaging of neuroinflammation in Alzheimer‘s disease. Clin. Transl Imaging. 3 (6), 437–447. https://doi.org/10.1007/s40336-015-0137-8 (2015).

    Google Scholar 

  65. Guo, Q. et al. Immune activation of murine RAW264.7 macrophages by sonicated and alkalized paramylon from Euglena gracilis. BMC Microbiol. 20 (1), 171. https://doi.org/10.1186/s12866-020-01782-y (2020).

    Google Scholar 

  66. Heneka, M. T. et al. Neuroinflammation in Alzheimer‘s disease. Lancet Neurol. 14 (4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5 (2015).

    Google Scholar 

  67. Zhao, W. J., Dong, F., Wang, J., Guo, X. & P Research progress on the relationship between intestinal flora and alzheimer’s disease. Adv. Clin. Med. 9 (5), 703–710. https://doi.org/10.12677/ACM.2019.95107 (2019).

    Google Scholar 

  68. Afsar, A., Chen, M., Xuan, Z. & Zhang, L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer‘s disease. Comput. Struct. Biotechnol. J. 21, 5662–5675. https://doi.org/10.1016/j.csbj.2023.10.058 (2023).

    Google Scholar 

  69. Dai, L. & Shen, Y. Insights into T-cell dysfunction in Alzheimer‘s disease. Aging Cell. 20 (12), e13511. https://doi.org/10.1111/acel.13511 (2021).

    Google Scholar 

  70. Wang, Y. & He, L. Research progress on microglia regulating microtubule-associated proteins in Alzheimer‘s disease. Cent. S Pharm. 22 (04), (2024).

  71. Holtz, A. M. et al. Secreted HHIP1 interacts with Heparan sulfate and regulates Hedgehog ligand localization and function. J. Cell. Biol. 209 (5), 739–757. https://doi.org/10.1083/jcb.201411024 (2015).

    Google Scholar 

  72. Wen, J. & Hadden, M. K. Affinity-based protein profiling identifies vitamin D3 as a heat shock protein 70 antagonist that regulates Hedgehog transduction in murine basal cell carcinoma. Eur. J. Med. Chem. 228, 114005. https://doi.org/10.1016/j.ejmech.2021.114005 (2022).

    Google Scholar 

  73. Blotta, S. et al. Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood 120 (25), 5002–5013. https://doi.org/10.1182/blood-2011-07-368142 (2012).

    Google Scholar 

  74. Hewavitharana, T. & Wedegaertner, P. B. Non-canonical signaling and localizations of heterotrimeric G proteins. Cell. Signal. 24 (1), 25–34. https://doi.org/10.1016/j.cellsig.2011.08.014 (2012).

    Google Scholar 

  75. Akhshi, T., Shannon, R. & Trimble, W. S. The complex web of canonical and non-canonical Hedgehog signaling. BioEssays 44 (3), e2100183. https://doi.org/10.1002/bies.202100183 (2022).

    Google Scholar 

  76. Jäger, T., Ocker, M., Kiesslich, T., Neureiter, E. & Neureiter, D. Thoughts on investigational Hedgehog pathway inhibitors for the treatment of cancer. Expert Opin. Investig. Drugs. 26 (2), 133–136. https://doi.org/10.1080/13543784.2017.1274392 (2017).

    Google Scholar 

  77. Praktiknjo, S. D., Saad, F., Maier, D., Ip, P. & Hipfner, D. R. Activation of smoothened in the Hedgehog pathway unexpectedly increases Gαs-dependent cAMP levels in drosophila. J. Biol. Chem. 293 (35), 13496–13508. https://doi.org/10.1074/jbc.RA118.001953 (2018).

    Google Scholar 

  78. Polizio, A. H. et al. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J. Biol. Chem. 286 (22), 19589–19596. https://doi.org/10.1074/jbc.M110.197111 (2011).

    Google Scholar 

  79. Qu, C. et al. Trimeric G protein-CARMA1 axis links smoothened, the Hedgehog receptor transducer, to NF-κB activation in diffuse large B-cell lymphoma. Blood 121 (23), 4718–4728. https://doi.org/10.1182/blood-2012-12-470153 (2013).

    Google Scholar 

  80. Yam, P. T., Langlois, S. D., Morin, S. & Charron, F. Sonic Hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 62 (3), 349–362. https://doi.org/10.1016/j.neuron.2009.03.022 (2009).

    Google Scholar 

  81. Tukachinsky, H., Lopez, L. V. & Salic, A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell. Biol. 191 (2), 415–428. https://doi.org/10.1083/jcb.201004108 (2010).

    Google Scholar 

  82. Sphyris, N., Hodder, M. C. & Sansom, O. J. Subversion of niche-signalling pathways in colorectal cancer: what makes and breaks the intestinal stem cell. Cancers (Basel). 13 (5), 1000. https://doi.org/10.3390/cancers13051000 (2021). Published online.

    Google Scholar 

  83. Jacobs, C. T. & Huang, P. Complex crosstalk of Notch and Hedgehog signalling during the development of the central nervous system. Cell. Mol. Life Sci. 78 (2), 635–644. https://doi.org/10.1007/s00018-020-03627-3 (2021).

    Google Scholar 

  84. Martelli, A. M. et al. Understanding the roles of the Hedgehog signaling pathway during T-cell lymphopoiesis and in T-cell acute lymphoblastic leukemia (T-ALL). Int. J. Mol. Sci. 24 (3), 2962. https://doi.org/10.3390/ijms24032962 (2023).

    Google Scholar 

  85. Pelullo, M. et al. Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711. https://doi.org/10.3389/fgene.2019.00711 (2019).

    Google Scholar 

  86. Chatterjee, S. & Sil, P. C. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol. Res. 142, 251–261. https://doi.org/10.1016/j.phrs.2019.02.027 (2019).

    Google Scholar 

  87. Jacobs, C. T. & Huang, P. Notch signalling maintains Hedgehog responsiveness via a Gli-dependent mechanism during spinal cord patterning in zebrafish. eLife 8, e49252. https://doi.org/10.7554/eLife.49252 (2019).

    Google Scholar 

  88. Patni, A. P. et al. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell. Oncol. (Dordr). 44 (3), 473–494. https://doi.org/10.1007/s13402-021-00591-3 (2021).

    Google Scholar 

  89. Wall, D. S. et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J. Cell. Biol. 184 (1), 101–112. https://doi.org/10.1083/jcb.200805155 (2009).

    Google Scholar 

  90. Marczenke, M. et al. GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium. Development 148 (21), dev200080. https://doi.org/10.1242/dev.200080 (2021).

    Google Scholar 

  91. Luo, Z. et al. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J. Mol. Cell. Biol. 12 (5), 345–358. https://doi.org/10.1093/jmcb/mjz088 (2020).

    Google Scholar 

  92. Ma, L. et al. WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell. Rep. 12 (5), 934–949. https://doi.org/10.1016/j.stemcr.2019.04.007 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the [Natural Science Foundation of China] under Grant [Number 82205064] and [Hunan Provincial Science and Technology Innovation Program] under Grant [2023RC3215], the [Hunan Provincial Natural Science Foundation] under Grant [2024JJ5236], and the [Furong Laboratory Science and Technology Research Project] under Grant [2023SK2113-2].

Funding

This work was supported by the [Natural Science Foundation of China] under Grant [Number 82205064] and [Natural Science Foundation of Shandong Province] under Grant [Number ZR2021QH110].

Author information

Author notes
  1. Ning Sheng, Hong-Yan Wang and Kun Song are co-first-authors.

Authors and Affiliations

  1. Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Lushan Road No. 58, Yuelu District, Changsha, Hunan Province, China

    Da-Hua Wu & Ya-Han Wang

  2. Zaozhuang Hospital of Traditional Chinese Medicine, No. 2666, Taihangshan Road, Xuecheng District, Zaozhuang, Shandong Province, China

    Ning Sheng, Hong-Yan Wang, Kun Song, Yong Zheng & Zi-Ying Zong

  3. Hunan Academy of Chinese Medicine, Yuehua Road No. 142, Yuelu District, Changsha, Hunan Province, China

    Jin-Wen Ge

Authors
  1. Ning Sheng
    View author publications

    Search author on:PubMed Google Scholar

  2. Hong-Yan Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Kun Song
    View author publications

    Search author on:PubMed Google Scholar

  4. Yong Zheng
    View author publications

    Search author on:PubMed Google Scholar

  5. Zi-Ying Zong
    View author publications

    Search author on:PubMed Google Scholar

  6. Jin-Wen Ge
    View author publications

    Search author on:PubMed Google Scholar

  7. Da-Hua Wu
    View author publications

    Search author on:PubMed Google Scholar

  8. Ya-Han Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

NS: Original draft. HYW: Project administration, Visualization. KS: Project administration, Formal analysis. YZ: Visualization. ZYZ: Formal analysis. JWG: Methodology. DHW: Methodology, Supervision. YHW: Writing—review & editing, Funding acquisition.

Corresponding authors

Correspondence to Jin-Wen Ge, Da-Hua Wu or Ya-Han Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Zaozhuang Hospital of Traditional Chinese Medicine (2025-syyws-001). All enrolled subjects signed an informed consent form (Date:2025/02/27/ version.2.0).

Consent for publication

Written informed consent was obtained from the clinical participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Supplementary Material 10

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, N., Wang, HY., Song, K. et al. Uncovering the role of integrated stress in Alzheimer’s disease through single-cell and transcriptomic analysis. Sci Rep (2026). https://doi.org/10.1038/s41598-026-34997-6

Download citation

  • Received: 24 June 2025

  • Accepted: 01 January 2026

  • Published: 06 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-34997-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Alzheimer’s disease
  • Integrated stress response
  • Single-cell sequencing
  • Key genes
  • Clinical validation
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing