Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Vigilance state dissociation induced by 5-MeO-DMT in mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 January 2026

Vigilance state dissociation induced by 5-MeO-DMT in mice

  • Benjamin J. B. Bréant  ORCID: orcid.org/0000-0002-1885-39631,2,3,
  • José Prius Mengual1,2,3,
  • Alexander Andrews  ORCID: orcid.org/0000-0001-5041-97211,2,
  • Anna Hoerder-Suabedissen  ORCID: orcid.org/0000-0003-1953-78711,2,3,
  • Jasmin Patel  ORCID: orcid.org/0009-0008-3779-54721,
  • David M. Bannerman  ORCID: orcid.org/0000-0002-3024-75954,
  • Trevor Sharp  ORCID: orcid.org/0000-0001-7434-97135 &
  • …
  • Vladyslav V. Vyazovskiy  ORCID: orcid.org/0000-0002-4336-66811,2,3 

Communications Biology , Article number:  (2026) Cite this article

  • 1599 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Slow-wave sleep
  • Wakefulness

Abstract

Psychedelics lead to profound changes in subjective experience and behaviour, which are typically conceptualised in psychological terms rather than corresponding to an altered brain state or a distinct state of vigilance. Here, we performed chronic electrophysiological recordings from the neocortex concomitant with pupillometry in freely moving adult male mice following an injection of a short-acting psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). We report an acute induction of a dissociated state, characterised by prominent slow oscillations in the cortex and marked pupil dilation in behaviourally awake, moving animals. REM sleep was initially markedly suppressed, but was overcompensated in the subsequent 48 hours, while administration of 5-MeO-DMT immediately after sleep deprivation attenuated the subsequent rebound of sleep slow-wave activity. We argue that the occurrence of a dissociated state combining features of waking and sleep may fundamentally underpin the known and hypothesised effects of psychedelics — from dream-like hallucinations to reopening of the critical period for plasticity.

Similar content being viewed by others

Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice

Article Open access 23 February 2022

5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats

Article Open access 17 May 2024

5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice

Article 04 April 2023

Data availability

All data presented in this manuscript are available on figshare (10.6084/m9.figshare.30058069). All raw data are available upon reasonable request to the corresponding authors.

Code availability

All codes are available upon reasonable request to the corresponding authors.

References

  1. Jouvet, M., Michel, F. & Courjon, J. On a stage of rapid cerebral electrical activity in the course of physiological sleep. C. R. Seances Soc. Biol. Fil. 153, 1024–1028 (1959).

    Google Scholar 

  2. Piéron, H. Le Problème Physiologique Du Sommeil. (Masson et Cie, 1913).

  3. Campbell, S. S. & Tobler, I. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).

    Google Scholar 

  4. Blanco-Duque, C. et al. Oscillatory-Quality of sleep spindles links brain state with sleep regulation and function. Sci. Adv. 10, eadn6247 (2024).

    Google Scholar 

  5. Dement, W. The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr. Clin. Neurophysiol. 10, 291–296 (1958).

    Google Scholar 

  6. Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    Google Scholar 

  7. Sarasso, S. et al. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 143, 3672–3684 (2020).

    Google Scholar 

  8. Walker, J. M., Glotzbach, S. F., Berger, R. J. & Heller, H. C. Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am. J. Physiol. 233, R213–R221 (1977).

    Google Scholar 

  9. Vyazovskiy, V. V., Palchykova, S., Achermann, P., Tobler, I. & Deboer, T. Different effects of sleep deprivation and torpor on EEG slow-wave characteristics in Djungarian hamsters. Cereb. Cortex 27, 950–961 (2017).

    Google Scholar 

  10. Miyasaka, M. & Domino, E. F. Neural mechanisms of ketamine-induced anesthesia. Int. J. Neuropharmacol. 7, 557–573 (1968).

    Google Scholar 

  11. Campbell, I. G. & Feinberg, I. NREM delta stimulation following MK-801 is a response of sleep systems. J. Neurophysiol. 76, 3714–3720 (1996).

    Google Scholar 

  12. Campbell, I. G. & Feinberg, I. Comparison of MK-801 and sleep deprivation effects on NREM, REM, and waking spectra in the rat. Sleep 22, 423–432 (1999).

    Google Scholar 

  13. Ammirati, F., Colivicchi, F., Di Battista, G., Garelli, F. F. & Santini, M. Electroencephalographic correlates of vasovagal syncope induced by head-up tilt testing. Stroke 29, 2347–2351 (1998).

    Google Scholar 

  14. Husain, A. M. Electroencephalographic assessment of coma. J. Clin. Neurophysiol. 23, 208–220 (2006).

    Google Scholar 

  15. Guillaumin, M. C. C. et al. Deficient synaptic neurotransmission results in a persistent sleep-like cortical activity across vigilance states in mice. Curr. Biol. 35, 1716–1729.e3 (2025).

  16. Vanhatalo, S. & Kaila, K. Development of neonatal EEG activity: from phenomenology to physiology. Semin. Fetal Neonatal Med. 11, 471–478 (2006).

    Google Scholar 

  17. Hinard, V. et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J. Neurosci. 32, 12506–12517 (2012).

    Google Scholar 

  18. Sanchez-Vives, M. V., Massimini, M. & Mattia, M. Shaping the default activity pattern of the cortical network. Neuron 94, 993–1001 (2017).

    Google Scholar 

  19. Yaden, D. B., Goldy, S. P., Weiss, B. & Griffiths, R. R. Clinically relevant acute subjective effects of psychedelics beyond mystical experience. Nat. Rev. Psychol. 3, 606–621 (2024).

    Google Scholar 

  20. Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30, 1181–1197 (2016).

    Google Scholar 

  21. Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).

    Google Scholar 

  22. Carhart-Harris, R. L. & Goodwin, G. M. The Therapeutic Potential of Psychedelic Drugs: Past, Present, and Future. Neuropsychopharmacology 42, 2105–2113 (2017).

    Google Scholar 

  23. Rucker, J. J. H., Iliff, J. & Nutt, D. J. Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology 142, 200–218 (2018).

  24. Nardou, R. et al. Psychedelics reopen the social reward learning critical period. Nature 618, 790–798 (2023).

    Google Scholar 

  25. Shao, L.-X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544.e4 (2021).

    Google Scholar 

  26. Vaidya, V. A., Marek, G. J., Aghajanian, G. K. & Duman, R. S. 5-HT(2A) receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci. 17, 2785–2795 (1997).

    Google Scholar 

  27. Heifets, B. D. & Olson, D. E. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacology 49, 104–118 (2024).

    Google Scholar 

  28. Bréant, B. J. B. et al. Psychedelic compound 5-MeO-DMT induces an altered wake state in mice. Sleep. Med. 100, S22 (2022).

    Google Scholar 

  29. Souza, A. C. et al. 5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats. Sci. Rep. 14, 11281 (2024).

    Google Scholar 

  30. Karalis, N. et al. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat. Neurosci. 19, 605–612 (2016).

    Google Scholar 

  31. Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 1–15 (2021).

    Google Scholar 

  32. Vyazovskiy, V. V., Cirelli, C. & Tononi, G. Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog. Brain Res. 193, 17–38 (2011).

    Google Scholar 

  33. Palagini, L., Baglioni, C., Ciapparelli, A., Gemignani, A. & Riemann, D. REM sleep dysregulation in depression: state of the art. Sleep. Med. Rev. 17, 377–390 (2013).

    Google Scholar 

  34. He, B. J., Zempel, J. M., Snyder, A. Z. & Raichle, M. E. The temporal structures and functional significance of scale-free brain activity. Neuron 66, 353–369 (2010).

    Google Scholar 

  35. Lendner, J. D. et al. An electrophysiological marker of arousal level in humans. Elife 9, (2020).

  36. Neske, G. T. The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front. Neural Circuits 9, (2016).

  37. Kahn, M. et al. Neuronal-spiking-based closed-loop stimulation during cortical ON- and OFF-states in freely moving mice. J. Sleep Res. 31, (2022).

  38. Harding, C. D. et al. Detection of neuronal OFF periods as low amplitude neural activity segments. BMC Neurosci. 24, 13 (2023).

    Google Scholar 

  39. Vyazovskiy, V. V. et al. Cortical firing and sleep homeostasis. Neuron 63, 865–878 (2009).

    Google Scholar 

  40. Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    Google Scholar 

  41. Borbély, A. A., Daan, S., Wirz-Justice, A. & Deboer, T. The two-process model of sleep regulation: a reappraisal. J. Sleep. Res. 25, 131–143 (2016).

    Google Scholar 

  42. Andrillon, T., Burns, A., Mackay, T., Windt, J. & Tsuchiya, N. Predicting lapses of attention with sleep-like slow waves. Nat. Commun. 12, 1–12 (2021).

    Google Scholar 

  43. Stephan, A. M., Lecci, S., Cataldi, J. & Siclari, F. Conscious experiences and high-density EEG patterns predicting subjective sleep depth. Curr. Biol. 31, 5487–5500.e3 (2021).

    Google Scholar 

  44. Ungurean, G., Martinez-Gonzalez, D., Massot, B., Libourel, P.-A. & Rattenborg, N. C. Pupillary behavior during wakefulness, non-REM sleep, and REM sleep in birds is opposite that of mammals. Curr. Biol. 31, 5370–5376.e4 (2021).

  45. Yüzgeç, Ö, Prsa, M., Zimmermann, R. & Huber, D. Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Curr. Biol. 28, 392–400.e3 (2018).

    Google Scholar 

  46. Carro-Domínguez, M. et al. Pupil size reveals arousal level fluctuations in human sleep. Nat. Commun. 16, 2070 (2025).

    Google Scholar 

  47. Ungurean, G. & Rattenborg, N. C. A mammal and bird’s-eye-view of the pupil during sleep and wakefulness. Eur. J. Neurosci. 59, 584–594 (2024).

    Google Scholar 

  48. Buzsáki, G., Haubenreiser, J., Grastyán, E., Czopf, J. & Kellényi, L. Hippocampal slow wave activity during appetitive and aversive conditioning in the cat. Electroencephalogr. Clin. Neurophysiol. 51, 276–290 (1981).

    Google Scholar 

  49. Vanderwolf, C. H. The electrocorticogram in relation to physiology and behavior: a new analysis. Electroencephalogr. Clin. Neurophysiol. 82, 165–175 (1992).

    Google Scholar 

  50. Willins, D. L. & Meltzer, H. Y. Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J. Pharmacol. Exp. Ther. 282, 699 (1997).

    Google Scholar 

  51. Shen, H.-W., Jiang, X.-L., Winter, J. C. & Yu, A.-M. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr. Drug Metab. 11, 659 (2010).

    Google Scholar 

  52. Ermakova, A. O., Dunbar, F., Rucker, J. & Johnson, M. W. A narrative synthesis of research with 5-MeO-DMT. J. Psychopharmacol. 36, 273–294 (2022).

    Google Scholar 

  53. Blackburne, G. et al. Complex slow waves in the human brain under 5-MeO-DMT. Cell Rep. 44, 116040 (2025).

    Google Scholar 

  54. Koch, C. The void and the brain. Cell Rep. 44, 116072 (2025).

    Google Scholar 

  55. Shen, H.-W., Jiang, X.-L. & Yu, A.-M. Development of a LC-MS/MS method to analyze 5-methoxy-N,N-dimethyltryptamine and bufotenine, and application to pharmacokinetic study. Bioanalysis 1, 87–95 (2009).

    Google Scholar 

  56. Jefferson, S. J. et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. bioRxiv 11, 515044 (2022).

    Google Scholar 

  57. Riga, M. S., Lladó-Pelfort, L., Artigas, F. & Celada, P. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT 1A and 5-HT 2A receptors. Neuropharmacology 142, 219–230 (2018).

    Google Scholar 

  58. Thomas, C. W., Guillaumin, M. C., McKillop, L. E., Achermann, P. & Vyazovskiy, V. V. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. Elife 9, (2020).

  59. El-Kanbi, K., de Lavilléon, G., Bagur, S., Lacroix, M. & Benchenane, K. Distinction between slow waves and delta waves sheds light to sleep homeostasis and their association to hippocampal sharp waves ripples. bioRxiv 12, 522034 (2022).

    Google Scholar 

  60. González-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 (2007).

    Google Scholar 

  61. Hanks, J. B. & González-Maeso, J. Animal models of serotonergic psychedelics. ACS Chem. Neurosci. 4, 33–42 (2013).

    Google Scholar 

  62. Fox, M. A., Stein, A. R., French, H. T. & Murphy, D. L. Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT): 5-HT1A/5-HT2A interactions in SERT-deficient mice. Br. J. Pharmacol. 159, 879–887 (2010).

    Google Scholar 

  63. Krone, L. B. et al. A role for the cortex in sleep-wake regulation. Nat. Neurosci. 24, 1210–1215 (2021).

    Google Scholar 

  64. Shao, L.-X. et al. Psilocybin’s lasting action requires pyramidal cell types and 5-HT2A receptors. Nature 642, 411–420 (2025).

  65. Javoy-Agid, F. et al. Distribution of monoaminergic, cholinergic, and GABAergic markers in the human cerebral cortex. Neuroscience 29, 251–259 (1989).

    Google Scholar 

  66. Sakai, K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience 197, 200–224 (2011).

    Google Scholar 

  67. Trulson, M. E. & Jacobs, B. L. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163, 135–150 (1979).

    Google Scholar 

  68. Trulson, M. E. & Trulson, V. M. Activity of nucleus raphe pallidus neurons across the sleep-waking cycle in freely moving cats. Brain Res 237, 232–237 (1982).

    Google Scholar 

  69. Jouvet, M. Sleep and serotonin an unfinished story. Neuropsychopharmacology 21, 24S–27S (1999).

    Google Scholar 

  70. Portas, C. M., Thakkar, M., Rainnie, D. & McCarley, R. W. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J. Neurosci. Official J. Soc. Neurosci. 16, (1996).

  71. Monti, J. M. Serotonin control of sleep-wake behavior. Sleep. Med. Rev. 15, 269–281 (2011).

    Google Scholar 

  72. Vyazovskiy, V. V. & Tobler, I. The temporal structure of behaviour and sleep homeostasis. PLoS One 7, (2012).

  73. Vanderwolf, C. H. & Robinson, T. E. Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis. Behav. Brain Sci. 4, 459–514 (1981).

    Google Scholar 

  74. Davis, C. J., Clinton, J. M., Jewett, K. A., Zielinski, M. R. & Krueger, J. M. Delta wave power: an independent sleep phenotype or epiphenomenon?. J. Clin. Sleep. Med. 7, S16 (2011).

    Google Scholar 

  75. Meyer, A. F., Poort, J., O’Keefe, J., Sahani, M. & Linden, J. F. A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100, 46–60.e7 (2018).

    Google Scholar 

  76. Bremer, F. Activité Electrique Du Cortex Cerebral Dans Les Etats De Sommeil Et De Veille Chez Le Chat. Comptes rendus des. seances de. la Soc. de. biologie et. de. ses. filiales 88, 465–467 (1936).

    Google Scholar 

  77. Magoun, H. W. Caudal and cephalic influences of the brain stem reticular formation. Physiol. Rev. 30, 459–474 (1950).

    Google Scholar 

  78. Jouvet, M. & Michel, F. Study of the cerebral electrical activity during sleep. C. R. Seances Soc. Biol. Fil. 152, 1167–1170 (1958).

    Google Scholar 

  79. Jouvet, M. & Michel, F. Electromyographic correlations of sleep in the chronic decorticate & mesencephalic cat. C. R. Seances Soc. Biol. Fil. 153, 422–425 (1959).

    Google Scholar 

  80. Barrett, F. S., Johnson, M. W. & Griffiths, R. R. Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin. J. Psychopharmacol. 29, 1182 (2015).

    Google Scholar 

  81. Barsuglia, J. et al. Intensity of mystical experiences occasioned by 5-MeO-DMT and comparison with a prior psilocybin study. Front. Psychol. 9, (2018).

  82. Goodwin, G. M. et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology 48, (2023).

  83. Zarate, C. A. et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol. Psychiatry 71, 939–946 (2012).

    Google Scholar 

  84. Blumberg, M. S., Dooley, J. C. & Tiriac, A. Sleep, plasticity, and sensory neurodevelopment. Neuron 110, 3230–3242 (2022).

  85. Lee, E. E., Della Selva, M. P., Liu, A. & Himelhoch, S. Ketamine as a novel treatment for major depressive disorder and bipolar depression: a systematic review and quantitative meta-analysis. Gen. Hosp. Psychiatry 37, 178–184 (2015).

    Google Scholar 

  86. Zanos, P. et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 70, 621–660 (2018).

    Google Scholar 

  87. Cichon, J. et al. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat. Neurosci. 26, 39–52 (2023).

    Google Scholar 

  88. Duncan, W. C. et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int. J. Neuropsychopharmacol. 16, 301–311 (2013).

    Google Scholar 

  89. Duncan, W. C. Jr, Ballard, E. D. & Zarate, C. A. Ketamine-induced glutamatergic mechanisms of sleep and wakefulness: Insights for developing novel treatments for disturbed sleep and mood. Handb. Exp. Pharmacol. 253, 337–358 (2019).

    Google Scholar 

  90. Wikler, A. Pharmacologic dissociation of behavior and EEG “sleep patterns” in dogs; morphine, n-allylnormorphine, and atropine. Proc. Soc. Exp. Biol. Med. 79, 261–265 (1952).

    Google Scholar 

  91. Castro-Zaballa, S. et al. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles. Behav. Brain Res. 359, 28–37 (2019).

    Google Scholar 

  92. Frohlich, J., Mediano, P. A. M., Bavato, F. & Gharabaghi, A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun. Biol. 6, 654 (2023).

    Google Scholar 

  93. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).

    Google Scholar 

  94. Bartram, J. et al. Cortical Up states induce the selective weakening of subthreshold synaptic inputs. Nat. Commun. 8, 665 (2017).

    Google Scholar 

  95. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep. Med. Rev. 10, 49–62 (2006).

    Google Scholar 

  96. Siegel, J. S. et al. Psilocybin desynchronizes the human brain. Nature 632, 131–138 (2024).

    Google Scholar 

  97. Šabanović, M. et al. Lasting dynamic effects of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) on cognitive flexibility. Mol. Psychiatry 1, 14 (2024).

    Google Scholar 

  98. O’Keefe, J. Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 3, 917–924 (1993).

    Google Scholar 

  99. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Google Scholar 

  100. Chemel, B. R., Roth, B. L., Armbruster, B., Watts, V. J. & Nichols, D. E. WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacology 188, 244–251 (2006).

    Google Scholar 

  101. Barbanoj, M. J. et al. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers. Psychopharmacology 196, 315–326 (2008).

    Google Scholar 

  102. Dudysová, D. et al. The effects of daytime psilocybin administration on sleep: implications for antidepressant action. Front. Pharmacol. 11, 602590 (2020).

    Google Scholar 

  103. Thomas, C. W. et al. Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl. Psychiatry 12, 77 (2022).

    Google Scholar 

  104. Deliens, G., Gilson, M. & Peigneux, P. Sleep and the processing of emotions. Exp. Brain Res. 232, 1403–1414 (2014).

    Google Scholar 

  105. Du, Y. et al. Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity. Chin. Med. J. 136, 2983–2992 (2023).

    Google Scholar 

  106. Castrén, E. Is mood chemistry?. Nat. Rev. Neurosci. 6, 241–246 (2005).

    Google Scholar 

  107. Fisher, S. P. et al. Stereotypic wheel running decreases cortical activity in mice. Nat. Commun. 7, (2016).

  108. Milinski, L. et al. Waking experience modulates sleep need in mice. BMC Biol. 19, 65 (2021).

    Google Scholar 

  109. Huber, R., Tononi, G. & Cirelli, C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30, 129–139 (2007).

    Google Scholar 

  110. McKillop, L. E. et al. Effects of aging on cortical neural dynamics and local sleep homeostasis in mice. J. Neurosci. 38, 3911 (2018).

    Google Scholar 

  111. Scheffer-Teixeira, R. & Tort, A. B. L. Theta-gamma cross-frequency analyses (hippocampus). Encycl. Comput. Neurosci. 1, 15 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laura McKillop, Christian Harding, Elise Meijer and Sian Wilcox for their assistance with surgery, drug preparation, equipment setup, animal husbandry, or data analysis; Gianina Ungurean and Niels Rattenborg for advice on ordering and installation of miniature cameras for monitoring pupil diameter; Stuart Peirson and Carina Pothecary on the materials and review of the oculometer; Vanda Reiss for her drawing of a mouse wearing the occulometer (Fig. 4.a); Matt Jones for his valuable comments; and Beckley Psytech for providing the compound for this study. The study was funded by UK Biotechnology and Biological Sciences Research Council grant (BB/M011224/1); Wellcome Trust Senior Investigator Award (106174/Z/14/Z); Wellcome Trust Strategic Award (098461/Z/12/Z); John Fell OUP Research Fund Grant (131/032); and the Medical Research Council (MR/S01134X/1).

Author information

Authors and Affiliations

  1. Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

    Benjamin J. B. Bréant, José Prius Mengual, Alexander Andrews, Anna Hoerder-Suabedissen, Jasmin Patel & Vladyslav V. Vyazovskiy

  2. Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK

    Benjamin J. B. Bréant, José Prius Mengual, Alexander Andrews, Anna Hoerder-Suabedissen & Vladyslav V. Vyazovskiy

  3. The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK

    Benjamin J. B. Bréant, José Prius Mengual, Anna Hoerder-Suabedissen & Vladyslav V. Vyazovskiy

  4. Department of Experimental Psychology, University of Oxford, Oxford, UK

    David M. Bannerman

  5. Department of Pharmacology, University of Oxford, Oxford, UK

    Trevor Sharp

Authors
  1. Benjamin J. B. Bréant
    View author publications

    Search author on:PubMed Google Scholar

  2. José Prius Mengual
    View author publications

    Search author on:PubMed Google Scholar

  3. Alexander Andrews
    View author publications

    Search author on:PubMed Google Scholar

  4. Anna Hoerder-Suabedissen
    View author publications

    Search author on:PubMed Google Scholar

  5. Jasmin Patel
    View author publications

    Search author on:PubMed Google Scholar

  6. David M. Bannerman
    View author publications

    Search author on:PubMed Google Scholar

  7. Trevor Sharp
    View author publications

    Search author on:PubMed Google Scholar

  8. Vladyslav V. Vyazovskiy
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.J.B.B.: Conceptualisation; Methodology, Investigation, Visualisation, Funding acquisition, Writing (original draft, review and editing). J.P.M.: Methodology, Visualisation, Writing (review and editing). A.A.: Methodology, Visualisation, Writing (review and editing). A.H.S.: Methodology, Visualisation, Writing (review and editing). J.P.: Methodology, Visualisation, Writing (review and editing). D.M.B.: Conceptualisation, Supervision, Writing (review and editing). T.S.: Conceptualisation, Supervision, Writing (review and editing). V.V.V.: Conceptualisation, Investigation, Funding acquisition, Supervision, Writing (original draft, review and editing)

Corresponding authors

Correspondence to Benjamin J. B. Bréant or Vladyslav V. Vyazovskiy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Francesca Siclari, Yuer Wu and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Joao Valente.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bréant, B.J.B., Prius Mengual, J., Andrews, A. et al. Vigilance state dissociation induced by 5-MeO-DMT in mice. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09412-x

Download citation

  • Received: 14 April 2025

  • Accepted: 10 December 2025

  • Published: 05 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09412-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing