Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood-based AT(N) biomarkers for Alzheimer’s disease and frontotemporal lobar degeneration in Latin America

Abstract

Dementia diagnosis increasingly relies on blood-based biomarkers, yet their performance in diverse populations remains insufficiently characterized. Latin America, with substantial genetic and environmental heterogeneity, is particularly underrepresented in biomarker research. Here we show that plasma AT(N) biomarkers can distinguish Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) in a multinational Latin American cohort (N = 605). Aβ42/Aβ40 amyloid-β ratios were reduced and levels of phosphorylated tau (p-tau217, p-tau181) and neurofilament light chain (NfL) were elevated in both disorders, with NfL showing greater increases in FTLD. Classification models achieved receiver operating characteristic areas under the curve (ROC AUCs) of 83% for AD and 88% for FTLD. Meta-analyses confirmed consistency across countries, and these markers correlated with executive, memory and global cognitive impairment. Biomarker alterations combined with disease-specific neuroimaging patterns and cognitive measures further improved accuracy (ROC AUCs of 89% for AD and 95% for FTLD). These findings indicate that plasma AT(N) biomarkers, combined with neuroimaging and clinical assessments, can enhance dementia diagnosis across diverse Latin American populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AT(N) plasma biomarker levels are altered in patients with AD and in patients with FTLD.
Fig. 2: Performance of AT(N) biomarkers for classification of AD and FTLD.
Fig. 3: AT(N) plasma biomarker associations across cognitive domains.
Fig. 4: Associations of plasma biomarkers with brain structure and function in AD and FTLD.
Fig. 5: Classification performance using AT(N) biomarkers, MRI and neuropsychological tests.

Data availability

Processed data supporting the findings of this study are available via GitHub (https://github.com/DuranLab2/Redlat_paper). Raw AT(N) biomarkers and neuropsychological, neuroimaging and additional clinical data are not publicly available due to participant privacy and institutional restrictions. Access to the ReDLat dataset is available upon reasonable request and application (contact A.I. at agustin.ibanez@gbhi.org). A formal data-sharing agreement is required prior to release. The approval process may typically take up to 12 weeks, depending on the nature of the request and compliance with institutional guidelines.

Code availability

The code used to perform machine learning and linear regression analyses can be accessed at https://github.com/DuranLab2/Redlat_paper.

References

  1. Mielke, M. M. et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 28, 1398–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barthelemy, N. R. et al. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat. Med. 30, 1085–1095 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palmqvist, S. et al. Blood biomarkers to detect Alzheimer disease in primary care and secondary care. JAMA 332, 1245–1257 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Ibanez, A. Latin American brain-health research requires regional data and tailored models. Nat. Aging 4, 1041–1042 (2024).

    Article  Google Scholar 

  6. Ibanez, A. & Slachevsky, A. Environmental−genetic interactions in ageing and dementia across Latin America. Nat. Rev. Neurol. 20, 571–572 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  7. McGlinchey, E. et al. Biomarkers of neurodegeneration across the Global South. Lancet Healthy Longev. 5, 100616 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hampel, H. et al. Blood-based biomarkers for Alzheimer’s disease: current state and future use in a transformed global healthcare landscape. Neuron 111, 2781–2799 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ribeiro, F., Teixeira-Santos, A. C., Caramelli, P. & Leist, A. K. Prevalence of dementia in Latin America and Caribbean countries: systematic review and meta-analyses exploring age, sex, rurality, and education as possible determinants. Ageing Res. Rev. 81, 101703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nitrini, R. et al. Prevalence of dementia in Latin America: a collaborative study of population-based cohorts. Int. Psychogeriatr. 21, 622–630 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Santamaria-Garcia, H. et al. Factors associated with healthy aging in Latin American populations. Nat. Med. 29, 2248–2258 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moguilner, S. et al. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations. Nat. Med. 30, 3646–3657 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Migeot, J. et al. Social exposome and brain health outcomes of dementia across Latin America. Nat. Commun. 16, 8196 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernandez, H. et al. The exposome of healthy and accelerated aging across 40 countries. Nat. Med. 31, 3089–3100 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ibanez, A. et al. Neuroecological links of the exposome and One Health. Neuron 112, 1905–1910 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parra, M. A. et al. Dementia in Latin America: assessing the present and envisioning the future. Neurology 90, 222–231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ibanez, A., Parra, M. A., Butler, C. & Latin America and the Caribbean Consortium on Dementia (LAC-CD). The Latin America and the Caribbean Consortium on Dementia (LAC-CD): from networking to research to implementation science. J. Alzheimers Dis. 82, S379–S394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Musa, G. et al. Alzheimer’s disease or behavioral variant frontotemporal dementia? Review of key points toward an accurate clinical and neuropsychological diagnosis. J. Alzheimers Dis. 73, 833–848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hampel, H. et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol. 17, 580–589 (2021).

    Article  PubMed  Google Scholar 

  20. Jack, C. R. Jr. et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement. 20, 5143–5169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Teunissen, C. E. et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 21, 66–77 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Dubois, B. et al. Alzheimer disease as a clinical-biological construct-an international working group recommendation. JAMA Neurol. 81, 1304–1311 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petersen, R. C., Mormino, E. & Schneider, J. A. Alzheimer disease—what’s in a name? JAMA Neurol. 81, 1245–1246 (2024).

    Article  PubMed  Google Scholar 

  24. Grande, G. et al. Blood-based biomarkers of Alzheimer’s disease and incident dementia in the community. Nat. Med. 31, 2027–2035 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Janelidze, S. et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Chatterjee, P. et al. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: a cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement. 19, 1117–1134 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Ashton, N. J. et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat. Med. 28, 2555–2562 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai, H., Pang, Y., Fu, X., Ren, Z. & Jia, L. Plasma biomarkers predict Alzheimer’s disease before clinical onset in Chinese cohorts. Nat. Commun. 14, 6747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Janelidze, S. et al. Plasma phosphorylated tau 217 and Aβ42/40 to predict early brain Aβ accumulation in people without cognitive impairment. JAMA Neurol. 81, 947–957 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ossenkoppele, R. et al. Plasma p-tau217 and tau-PET predict future cognitive decline among cognitively unimpaired individuals: implications for clinical trials. Nat. Aging 5, 883–896 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Constantinides, V. C. et al. Application of the AT(N) and other CSF classification systems in behavioral variant frontotemporal dementia. Diagnostics (Basel) 13, 332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benussi, A. et al. Plasma p-tau(217) and neurofilament/p-tau(217) ratio in differentiating Alzheimer’s disease from syndromes associated with frontotemporal lobar degeneration. Alzheimers Dement. 21, e14482 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. VandeVrede, L. et al. Evaluation of plasma phosphorylated tau217 for differentiation between Alzheimer disease and frontotemporal lobar degeneration subtypes among patients with corticobasal syndrome. JAMA Neurol. 80, 495–505 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thijssen, E. H. et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 26, 387–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinacker, P. et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 91, e1390–e1401 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Cousins, K. A. Q. et al. ATN status in amnestic and non-amnestic Alzheimer’s disease and frontotemporal lobar degeneration. Brain 143, 2295–2311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. O’Bryant, S. E. et al. Neurodegeneration from the AT(N) framework is different among Mexican Americans compared to non-Hispanic whites: a Health & Aging Brain among Latino Elders (HABLE) study. Alzheimers Dement. 14, e12267 (2022).

    Google Scholar 

  39. O’Bryant, S. E. et al. Proteomic profiles of neurodegeneration among Mexican Americans and non-Hispanic whites in the HABS-HD study. J. Alzheimers Dis. 86, 1243–1254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Honig, L. S. et al. Evaluation of plasma biomarkers for A/T/N classification of Alzheimer disease among adults of Caribbean Hispanic ethnicity. JAMA Netw. Open 6, e238214 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pandey, N. et al. Plasma phospho-tau217 as a predictive biomarker for Alzheimer’s disease in a large south American cohort. Alzheimers Res. Ther. 17, 1 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santos, L. E. et al. Performance of plasma biomarkers for diagnosis and prediction of dementia in a Brazilian cohort. Nat. Commun. 16, 2911 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Borelli, W. V. et al. Diagnostic performance of Alzheimer’s disease blood and CSF biomarkers in a Brazilian cohort with low educational attainment. Mol. Psychiatry 30, 6090–6098 (2025).

    Article  CAS  PubMed  Google Scholar 

  44. Palmqvist, S. et al. Plasma phospho-tau217 for Alzheimer’s disease diagnosis in primary and secondary care using a fully automated platform. Nat. Med. 31, 2036–2043 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ibanez, A. et al. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): driving multicentric research and implementation science. Front. Neurol. 12, 631722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fluss, R., Faraggi, D. & Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 47, 458–472 (2005).

    Article  PubMed  Google Scholar 

  47. Salimi, Y., Domingo-Fernandez, D., Hofmann-Apitius, M. & Birkenbihl, C. Data-driven thresholding statistically biases ATN profiling across cohort datasets. J. Prev. Alzheimers Dis. 11, 185–195 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohaupt, P. et al. Blood-based biomarkers and plasma Aβ assays in the differential diagnosis of Alzheimer’s disease and behavioral-variant frontotemporal dementia. Alzheimers Res. Ther. 16, 279 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palmqvist, S. et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol. Med. 11, e11170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Primers 7, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mattsson, N., Andreasson, U., Zetterberg, H., Blennow, K. & Alzheimer’s Disease Neuroimaging Initiative. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 74, 557–566 (2017).

  52. Fan, Z., Liu, X., Liu, J., Chen, C. & Zhou, M. Neurofilament light chain as a potential biomarker in plasma for Alzheimer’s disease and mild cognitive impairment: a systematic review and a meta-analysis. J. Integr. Neurosci. 22, 85 (2023).

    Article  PubMed  Google Scholar 

  53. Grossman, M. et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Primers 9, 40 (2023).

    Article  PubMed  Google Scholar 

  54. Alvarez-Sanchez, L. et al. Assessment of plasma and cerebrospinal fluid biomarkers in different stages of Alzheimer’s disease and frontotemporal dementia. Int. J. Mol. Sci. 24, 1226 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Y. et al. Diagnostic value of isolated plasma biomarkers and its combination in neurodegenerative dementias: a multicenter cohort study. Clin. Chim. Acta 558, 118784 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Thijssen, E. H. et al. Differential diagnostic performance of a panel of plasma biomarkers for different types of dementia. Alzheimers Dement. 14, e12285 (2022).

    Google Scholar 

  57. Gendron, T. F. et al. Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Rep. Med. 3, 100607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouteloup, V. et al. Cognitive phenotyping and interpretation of Alzheimer blood biomarkers. JAMA Neurol. 82, 506–515 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parra, M. A. et al. Biomarkers for dementia in Latin American countries: gaps and opportunities. Alzheimers Dement. 19, 721–735 (2023).

    Article  PubMed  Google Scholar 

  60. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maito, M. A. et al. Classification of Alzheimer’s disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: a cross sectional observational study. Lancet Reg. Health Am. 17, 100387 (2023).

    PubMed  Google Scholar 

  62. McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Strong, M. J. et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 153–174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. O’Bryant, S. E. et al. Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer’s research consortium study. Arch. Neurol. 65, 1091–1095 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cedarbaum, J. M. et al. Rationale for use of the Clinical Dementia Rating Sum of Boxes as a primary outcome measure for Alzheimer’s disease clinical trials. Alzheimers Dement. 9, S45–S55 (2013).

    Article  PubMed  Google Scholar 

  70. Miyagawa, T. et al. Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimers Dement. 16, 106–117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gonzalez-Gomez, R. et al. Educational disparities in brain health and dementia across Latin America and the United States. Alzheimers Dement. 20, 5912–5925 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Legaz, A. et al. Structural inequality linked to brain volume and network dynamics in aging and dementia across the Americas. Nat. Aging 5, 259–274 (2025).

    Article  PubMed  Google Scholar 

  73. Gonzalez-Gomez, R. et al. Qualitative and quantitative educational disparities and brain signatures in healthy aging and dementia across global settings. EClinicalMedicine 82, 103187 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morris, J. C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412–2414 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Chapman, K. R. et al. Mini Mental State Examination and Logical Memory scores for entry into Alzheimer’s disease trials. Alzheimers Res. Ther. 8, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Martinez-Dubarbie, F. et al. Diagnostic performance of plasma p-tau217 in a memory clinic cohort using the Lumipulse automated platform. Alzheimers Res. Ther. 17, 68 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ashford, M. T. et al. Screening and enrollment of underrepresented ethnocultural and educational populations in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 18, 2603–2613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cruzat, J. et al. Temporal irreversibility of large-scale brain dynamics in Alzheimer’s disease. J. Neurosci. 43, 1643–1656 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020).

  80. Sanz Perl, Y. et al. Model-based whole-brain perturbational landscape of neurodegenerative diseases. eLife 12, e83970 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social,behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  82. Sanchez-Meca, J., Marin-Martinez, F. & Chacon-Moscoso, S. Effect-size indices for dichotomized outcomes in meta-analysis. Psychol. Methods 8, 448–467 (2003).

    Article  PubMed  Google Scholar 

  83. Ruscio, J. A probability-based measure of effect size: robustness to base rates and other factors. Psychol. Methods 13, 19–30 (2008).

    Article  PubMed  Google Scholar 

  84. Hernandez, H. et al. Brain health in diverse settings: how age, demographics and cognition shape brain function. Neuroimage 295, 120636 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  86. Kulminski, A. M. et al. Genetic and regulatory architecture of Alzheimer’s disease in the APOE region. Alzheimers Dement. 12, e12008 (2020).

    Google Scholar 

Download references

Acknowledgements

Data in this manuscript were collected by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), supported by National Institutes of Health (NIH) research grant R01 AG057234, funded by the National Institute on Aging (NIA) and the Fogarty International Center (FIC); an Alzheimer’s Association grant (SG-20-725707-ReDLat); the Rainwater Charitable Foundation; and the Global Brain Health Institute, with additional support from the Bluefield Project to Cure Frontotemporal Dementia, an NIH contract (75N95022C00031) and the NIA under award numbers R01 AG075775, R01 AG082056 and R01 AG083799. C.D.-A. is supported by ANID/FONDECYT Regular (1210622 and 1250091), ANID/NAM22I0007, ANID/PIA/ANILLOS ACT210096, the Alzheimer’s Association (AARGD-24-1310017), ANID/FOVI240065 and ANID/Proyecto Exploracion 13240170. A.I. is supported by grants from ANID/FONDECYT Regular (1250091, 1210176 and 1220995), ANID/FONDAP/15150012, Takeda CW2680521 and ReDLat. C.D.-A. and A.I. are supported by grant ANID/PIA/ANILLO ACT210096. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these institutions. H.Z. is a Wallenberg Scholar and a Distinguished Professor at the Swedish Research Council, supported by grants from the Swedish Research Council (2023-00356, 2022-01018 and 2019-02397), the European Union’s Horizon Europe Research and Innovation Program under grant agreement number 101053962, Swedish State Support for Clinical Research (ALFGBG-71320), the Alzheimer Drug Discovery Foundation (201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (ADSF-21-831376-C, ADSF-21-831381-C, ADSF-21-831377-C and ADSF-24-1284328-C), the European Partnership on Metrology (co-financed by the European Union’s Horizon Europe Research and Innovation Program and by the Participating States (NEuroBioStand, 22HLT07)), the Bluefield Project to Cure Frontotemporal Dementia, the Cure Alzheimer’s Fund, the Olav Thon Foundation, the Erling-Persson Family Foundation, Familjen Rönströms Stiftelse, Stiftelsen för Gamla Tjänarinnor (Hjärnfonden, Sweden (FO2022-0270)), the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodowska-Curie grant agreement number 860197 (MIRIADE), the European Union Joint Program–Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre and the UK Dementia Research Institute at UCL (UKDRI-1003). K.H. is partially supported by NIH grants RF1AG059867, RF1AG064312 and R01AG083799. A.M.G. is partially supported by the NIA of the NIH (R01AG075775, R01AG083799 and 2P01AG019724); ANID (FONDECYT Regular 1250317 and 1250091); DICYT-USACH (032351GDAS); Agencia Nacional de Promoción Científica y Tecnológica (01-PICTE-2022-05-00103); and ReDLat, which is supported by the FIC, the NIH/NIA (R01AG057234, R01AG075775, R01AG21051 and CARDS−NIH), the Alzheimer’s Association (SG-20-725707), the Rainwater Charitable Foundation’s Tau Consortium, the Bluefield Project to Cure Frontotemporal Dementia and the Global Brain Health Institute. F.R.F. is supported by the Alzheimer’s Association (AARF-21-848281). This research was supported in part by the Intramural Research Program of the NIH/NIA, Department of Health and Human Services, project number ZIAAG000534. M.S.-C. receives funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement number 948677); ERA PerMed-ERA NET; the Generalitat de Catalunya (Departament de Salut) through project SLD077/21/000001 and projects PI19/00155 and PI22/00456, funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union; a fellowship from ‘la Caixa’ Foundation (ID 100010434); and the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodowska-Curie grant agreement number 847648 (LCF/BQ/PR21/11840004). A.S. is partially supported by ANID/Fondap/15150012, ANID/Fondecyt/1231839, ANID/FONDEF/ID22I10251 and ANID/Proyectos de Exploración 13220082. The content is solely the responsibility of the authors and does not represent the official views of the institutions.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Study conception and design: A.I., C.D.-A., A.C. and F.C.M. Plasma sample collection: A.S., D.A., D.L.M., E.R., F.L., J.A.F., M.I.B., M.B. and N.C. Data collection, curation and analysis: A.C., F.C.M., P.O., H.H., F.H., R.G.-G. and D.C. Machine learning methods: F.C., H.H., A.I. and H.S.M. Imaging analyses: R.G.-G. and C.C.-O. Writing—original draft: A.C., F.C., P.O., H.H., C.G.-S., C.D.-A. and A.I. Writing—review and editing: all authors. Project administration and funding: C.D.-A. and A.I. Accessed and verified data: A.C., P.O., H.H. and R.G.-G.

Corresponding authors

Correspondence to Agustin Ibañez or Claudia Duran-Aniotz.

Ethics declarations

Competing interests

H.Z. has served on scientific advisory boards and/or as a consultant for AbbVie, Acumen, Alector, Alzinova, ALZPath, Amylyx, Annexon, Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai, LabCorp, Merry Life, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics and Wave; has given lectures in symposia sponsored by Alzecure, Biogen, Cellectricon, Fujirebio, Lilly, Novo Nordisk and Roche; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). Not related to the current work, K.H. is the Honorary Lifetime Co-founder of iFutureLab Inc., serves on the scientific advisory board of the company and has received consulting fees from the company. Z.L.’s participation in this project was part of a competitive contract awarded to DataTecnica LLC by the NIH to support open science research. S.M.D.B. has served on scientific advisory boards and/or as a consultant for Biogen, Lilly, Novo Nordisk and Roche and has received a research productivity grant from the National Council for Scientific and Technological Development (Ministry of Science and Technology−Brazil). M.S.-C. has received consultancy/speaker fees (paid to the institution) in the past 36 months from Almirall, Lilly, Quanterix, Novo Nordisk and Roche Diagnostics. He has received consultancy fees from or served on advisory boards (paid to the institution) of Lilly, Grifols, Novo Nordisk and Roche Diagnostics. He was granted a project and is a site investigator of a clinical trial (funded to the institution) by Roche Diagnostics. In-kind support for research (to the institution) was received from ADx Neurosciences, Alamar Biosciences, ALZpath, Avid Radiopharmaceuticals, Lilly, Fujirebio, Janssen Research & Development, Meso Scale Discovery and Roche Diagnostics. M.S.-C. did not receive any personal compensation from these organizations or any other for-profit organization. The other authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Inge Verberk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of plasma AT(N) biomarker levels in cognitively normal (CN), Alzheimer’s disease (AD), and frontotemporal lobar degeneration (FTLD) participants after removing outliers.

Levels of (a) Aβ42/Aβ40 ratio, (b) p-tau217, (c) p-tau181 and (d) NfL after outlier removal using the z-score method (|z | > 3). Group differences in panels (ad) were assessed using one-way Kruskal–Wallis tests followed by Dunn’s multiple-comparisons post hoc tests. Aβ42/Aβ40 ratio: CN vs. AD, p < .001; CN vs. FTLD, p = .001; AD vs. FTLD, p = 0.366. p-tau217: CN vs. AD, p < .001; CN vs. FTLD, p < .001; AD vs. FTLD, p = 0.021. p-tau181: CN vs. AD, p < .001; CN vs. FTLD p < .001; AD vs. FTLD, p = 0.067. NfL: CN vs. AD, p < .001; CN vs. FTLD p < .001; AD vs. FTLD, p < .001. ANCOVA analyses adjusted for sex, age, and education are shown in panel (e), and in panel (f) after outlier removal. Aβ42/Aβ40 ratio: CN vs. AD, p < .001; CN vs. FTLD p = .001; AD vs. FTLD, p = 0.253. p-tau217: CN vs. AD, p < .001; CN vs. FTLD p < .001; AD vs. FTLD, p = 0.017. p-tau181: CN vs. AD, p < .001; CN vs. FTLD p < .001; AD vs. FTLD, p = 0.058. NfL: CN vs. AD, p < .001; CN vs. FTLD p < .001; AD vs. FTLD, p < .001. P values: ***p < .001, *p < .05. CN: cognitively normal individuals; AD: Alzheimer disease patients; FTLD: frontotemporal lobar degeneration patients.

Extended Data Fig. 2 Diagnostic performance of individual plasma AT(N) biomarkers for pairwise classifications.

Receiver Operating Characteristic area under the curve (ROC AUC) for (a) CN vs. AD, (b) CN vs. FTLD, and (c) FTLD vs. AD for each AT(N) biomarker. Each data point represents a participant (CN: n = 202; AD: n = 223; FTLD: n = 134). ROC-AUC data are presented as mean values ± SEM. The bottom panels display Youden Index analyses for the top-performing biomarkers: p-tau217 (CN vs. AD) and NfL (CN vs. FTLD). Green dashed lines indicate optimal biomarker thresholds, and red dashed lines represent probability decision thresholds. CN: cognitively normal individuals; AD: Alzheimer’s disease patients; FTLD: frontotemporal lobar degeneration patients; SEM: Standard Error of the Mean.

Extended Data Fig. 3 Performance of AT(N) biomarkers for classification of AD vs. FTLD.

Receiver Operating Characteristic area under the curve (ROC AUC) for FTLD vs. AD for models trained with AT(N) biomarkers. Permutation tests ranked AT(N) biomarkers based on their impact on model output. Each data point represents a participant (AD: n = 202; FTLD: n = 134). ROC-AUC data are presented as mean values ± SEM. Feature importance magnitudes represent the mean decrease in model performance (AUC-ROC) when a feature is permuted. The direction of the association (positive or negative bar) indicates whether a feature is predictive of class 1 (AD) or class 0 (FTLD). In contrast, features with a mean importance score ≤ 0.005 are considered non-predictive. AUC: Area Under the Curve; CN: cognitively normal individuals; AD: Alzheimer’s disease patients; FTLD: frontotemporal lobar degeneration patients; SEM: Standard Error of the Mean.

Extended Data Fig. 4 Associations of AT(N) plasma biomarkers and countries with cognitive domains.

Ridge regression models were used to predict each cognitive domain using AT(N) biomarkers and country in (a) CN (n = 186) + AD (n = 148), (b) CN (n = 186) + FTLD (n = 93), and (c) CN + AD + FTLD. Plots display R2, f2 and F values for each analysis. Saturated colors highlight significant (p < .05) associations for each predictor. Top predictors for CN + AD (p-value): Executive function: p-tau217 = 1.4×10−8, NfL = 5.4×10−5; Memory: p-tau217 = 2.4×10−10; Global cognition: p-tau217 = 9.4×10−13, NfL = 1.7×10−4; Functionality: p-tau217 = 7.3×10−7, NfL = 3×10−3. Top predictor for CN + FTLD (p-value): Executive function: NfL = 1.2×10−7, p-tau217 = 6.7×10−6; Memory: p-tau217 = 7×10−5, NfL = 3.1×10−3; Global cognition: p-tau217 = 6.7×10−13, NfL = 8.5×10−10; Functionality: p-tau217 = 7.8×10−6, NfL = 2.1×10−5. Top predictor for CN + AD + FTLD (p-value): Executive function: p-tau217 = 9.6×10−9, NfL = 1.3×10−8; Memory: p-tau217 = 4.2×10−9, NfL = 1.1×10−2; Global cognition: p-tau217 = 8.9×10−14, NfL = 1.2×10−8; Functionality: p-tau217 = 1.8×10−5, NfL = 1.7×10−4. CN: cognitively normal individuals; AD: Alzheimer’s disease patients; FTLD: frontotemporal lobar degeneration patients.

Extended Data Fig. 5 Feature importance across different feature sets in pairwise classification models.

Permutation-based feature importance analyses for models distinguishing (a) CN vs. AD and (b) CN vs. FTLD using different combinations of plasma AT(N) biomarkers, neuropsychological tests, and MRI-derived variables. Each panel shows the ranked contribution of features based on their impact on model output. N = 104 for CN individuals, n = 95 for AD patients, and n = 58 for FTLD patients. MRI: magnetic resonance imaging; Cog: Cognition; Hipp: hippocampus; R: right; L: left; TMT-B: trail making test part B; Benson: Benson Complex Figure test; CN: cognitively normal individuals; AD: Alzheimer disease patients; FTLD: frontotemporal lobar degeneration patients.

Extended Data Fig. 6 Ancestry structure, regression analyses, and biomarker distributions by ApoE ε4 status.

(a) Principal component (PC) projection of genetic data showing ancestry assignment. Most participants (n = 300) were classified as AMR, with six as EUR and one as AFR. (b) Distribution of AT(N) biomarkers stratified by ApoE rs429358 ε4 carrier status (presence vs. absence of at least one ε4 allele). Statistical significance was assessed using the two-sided Mann–Whitney U test. Aβ42/Aβ40 ratio: ε4- vs ε4 + , p < .001; p-tau217: ε4- vs ε4 + , p < .001; p-tau181: ε4- vs ε4 + , p < .001; NfL: ε4- vs ε4 + , p = .0394. Significance levels: *p < .05, ***p < .001. Ridge regression analysis was performed for each cognitive domain based on plasma levels of AT(N) biomarkers and ApoE rs429358 ε4 genotype (presence vs. absence of at least one ε4 allele) in CN (n = 165) and AD patients (n = 126) (c), and in CN (n = 165) and FTLD patients (n = 79) (d). The plots display R², f², F, and significant p-values for each regression analysis. Saturated colors highlight significant associations (p < .05) for each predictor. Top predictor for CN + AD (p-value): Executive function: p-tau217 = 1.0×10-5, NfL = 1.7×10-4; Memory: p-tau217 = 1.1×10-7, ApoE ε4 = 9.2×10-3; Global cognition: p-tau217 = 4.8×10-10, NfL = 7.7×10-5; Functionality: p-tau217 = 2.7×10-4, NfL = 3×10-2. Top predictor for CN + FTLD (p-value): Executive function: NfL = 2.9×10-8, p-tau217 = 4.5×10-6; Memory: p-tau217 = 5.3×10-4, NfL = 1.6×10-3; Global cognition: p-tau217 = 6.0×10-12, NfL = 2.4×10-9; Functionality: p-tau217 = 2.6×10-6, NfL = 1.2×10-5. EUR: European; EAS: East Asian; AMR: Amerindian; SAS: South Asian; AFR: African; ε4-: ApoE ε4 non carriers; ε4 + : ApoE ε4 carriers; CN: cognitively normal individuals; AD: Alzheimer disease patients; FTLD: frontotemporal lobar degeneration patients.

Extended Data Fig. 7 Sensitivity analyses.

Receiver Operating Characteristic (ROC) curve area under the curve (AUC) for CN vs AD (a) and CN vs FTLD (b) for models trained with AT(N) biomarkers after matching samples by sex, age, and education Each data point represents a participant. ROC-AUC data are presented as mean values ± SEM. Permutation test values for features used to train the models, ranked based on their impact on model output for AD vs CN (a) and FTLD vs CN (b). Feature importance magnitudes represent the mean decrease in model performance (AUC-ROC) when a feature is permuted. The direction of the association indicates whether a feature is predictive of class 1 (AD or FTLD) or class 0 (CN), while features with a mean importance score ≤ .005 are considered non-predictive. (c-d) Ridge regression analysis was performed for each cognitive domain based on plasma levels of AT(N) biomarkers and diagnosis in CN and AD patients after matching by sex, age, and education (c), and in CN and FTLD patients (d). The plots display R², f², F, and significant p-values for each regression analysis. Saturated colors highlight significant associations (p < .05) for each predictor within the model. Top predictor for CN + AD (p-value): Executive function: p-tau217 = 7.4×10−6, NfL = 2.8×10−2; Memory: p-tau217 = 1.7×10−8; Global cognition: p-tau217 = 3.3×10−6, Aβ42/Aβ40 ratio = 2.2×10−2, NfL = 4.4×10−2; Functionality: p-tau217 = 2.6×10−5, NfL = 3.3×10−2. Top predictor for CN + FTLD (p-value): Executive function: NfL = 1.0×10−5, and p-tau217 = 5.0×10−5; Memory: p-tau217 = 1.2×10−4, NfL = 7.6×10−3; Global cognition: p-tau217 = 2.1×10−10, NfL = 4.2×10−7; Functionality: p-tau217 = 3.5×10−5, NfL = 1.2×10−3. CN: cognitively normal individuals; AD: Alzheimer’s disease patients; FTLD: frontotemporal lobar degeneration patients; SEM: Standard Error of the Mean.

Extended Data Fig. 8 Effect of comorbidities on AT(N) biomarkers.

Pie chart showing comorbidity percentages in the ReDLat cohort. (a). Receiver Operating Characteristic (ROC) curve area under the curve (AUC) for CN vs AD (b) and CN vs FTLD (c) for models trained with AT(N) biomarkers and comorbidities. Each data point represents a participant (CN: n = 202; AD: n = 223; FTLD: n = 134). ROC-AUC data are presented as mean values ± SEM. Permutation test values for features used to train the models, ranked based on their impact on model output for AD vs CN (b) and FTLD vs CN (c). Feature importance magnitudes represent the mean decrease in model performance (AUC-ROC) when a feature is permuted. The direction of the association indicates whether a feature is predictive of class 1 (AD or FTLD) or class 0 (CN), while features with a mean importance score ≤ .005 are considered non-predictive. Ridge regression analysis was performed for each cognitive domain using plasma levels of AT(N) biomarkers and comorbidities in CN and AD patients (d) and in CN and FTLD patients (e). The plots display R², f², and F values for each regression analysis. Saturated colors highlight significant associations (p < .05) for each predictor within the model. Top predictor for CN + AD (p-value): Executive function: p-tau217 = 4.5×10−8, NfL = 1.7×10−3; Memory: p-tau217 = 7.9×10−12; Global cognition: p-tau217 = 8.2×10−12, NfL = 1.5×10−4; Functionality: p-tau217 = 2.2×10−6, NfL = 1.5×10−2. Top predictor for CN + FTLD (p-values): Executive function: NfL = 5.9×10−9, p-tau217 = 1.7×10−6; Memory: p-tau217 = 8.6×10−5, NfL = 8.9×10−4; Global cognition: p-tau217 = 1.1×10−12, NfL = 2.2×10−10; Functionality: p-tau217 = 3.1×10−6, NfL = 5.4×10−6. Comorb: Comorbidities; CN: cognitively normal individuals; AD: Alzheimer’s disease patients; FTLD: frontotemporal lobar degeneration patients; SEM: Standard Error of the Mean.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caviedes, A., Cabral-Miranda, F., Orellana, P. et al. Blood-based AT(N) biomarkers for Alzheimer’s disease and frontotemporal lobar degeneration in Latin America. Nat Aging (2026). https://doi.org/10.1038/s43587-025-01061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43587-025-01061-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing