Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and mechanistic insights into iminium-catalysed macrocyclization by nuclear transport factor 2-like enzymes

Abstract

Macrocyclization is crucial in natural product biosynthesis for enhancing molecular rigidity and stability. Although thioesterase-mediated macrolactonization or macrolactamization is the predominant mechanism in type I polyketide synthases, here we report an alternative macrocyclization mechanism in which nuclear transport factor 2 (NTF2)-like enzymes catalyse a tandem stereoselective Michael addition and Knoevenagel condensation to construct a tetrahydrofuran-fused macrocyclic carbocycle. Genome mining identified a family of NTF2-like proteins that share this tandem cyclization capability. X-ray crystal structures complexed with substrate mimics and structure-based mutagenesis reveal that a lysine residue forms an iminium intermediate with the terminal aldehyde to enable cyclization, while an aspartic acid acts as a general base to mediate proton transfers. Structures capturing distinct states, from linear precursor to precyclization, provide direct insight into the ring-closure process. This work elucidates an iminium-catalysed tandem cyclization mechanism, expanding the known catalytic repertoire of NTF2-like enzymes and highlighting the potential of iminium-based biocatalysis in natural product biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biosynthesis of AKA (1).
Fig. 2: The macrocyclization process for AKA and MAN.
Fig. 3: Crystal structures of CatM–6b and CatM–W86A–6a.
Fig. 4: Iminium catalysis involved in the macrocyclization reactions.
Fig. 5: Captured conformation of ligands and proposed reaction mechanism for CatM.

Data availability

Data supporting the findings of this work are available within the paper and its Supplementary Information files. Crystal structures of AkaM, SacM, CatM, MicM, SacM–3, SacM–6b, CatM–6b and CatM–W86A–6a have been deposited in the Protein Data Bank under accession numbers 9IQ3, 9IQ7, 9IQ5, 9IQD, 9IQK, 9IQL, 9IQM and 9IQN, respectively.

References

  1. Kopp, F. & Marahiel, M. A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24, 735–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, J., Li, Y., Bai, Z., Lv, H. & Wang, H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C–S and C–C bond formation. Nat. Prod. Rep. 38, 981–992 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Itoh, H. & Inoue, M. Comprehensive structure–activity relationship studies of macrocyclic natural products enabled by their total syntheses. Chem. Rev. 119, 10002–10031 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Martí-Centelles, V., Pandey, M. D., Burguete, M. I. & Luis, S. V. Macrocyclization reactions: the importance of conformational, configurational, and template-induced preorganization. Chem. Rev. 115, 8736–8834 (2015).

    Article  PubMed  Google Scholar 

  6. Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate?. Nat. Prod. Rep. 33, 183–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Czekster, C. M., Ludewig, H., McMahon, S. A. & Naismith, J. H. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat. Commun. 8, 1045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chekan, J. R., Estrada, P., Covello, P. S. & Nair, S. K. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. Proc. Natl Acad. Sci. USA 114, 6551–6556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, J., McIntosh, J., Hathaway, B. J. & Schmidt, E. W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, K., Condurso, H. L., Li, G., Ding, Y. & Bruner, S. D. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Nat. Chem. Biol. 12, 973–979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Haslinger, K., Peschke, M., Brieke, C., Maximowitsch, E. & Cryle, M. J. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521, 105–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Holding, A. N. & Spencer, J. B. Investigation into the mechanism of phenolic couplings during the biosynthesis of glycopeptide antibiotics. ChemBioChem 9, 2209–2214 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Aldemir, H. et al. Carrier protein-free enzymatic biaryl coupling in arylomycin A2 assembly and structure of the cytochrome P450 AryC. Chemistry 28, e202104451 (2022).

    Article  PubMed  Google Scholar 

  15. Nanudorn, P. et al. Atropopeptides are a novel family of ribosomally synthesized and posttranslationally modified peptides with a complex molecular shape. Angew. Chem. Int. Ed. 61, e202208361 (2022).

    Article  CAS  Google Scholar 

  16. He, B.-B. et al. Bacterial cytochrome P450 catalyzed posttranslational macrocyclization of ribosomal peptides. Angew. Chem. Int. Ed. 62, e202311533 (2023).

    Article  CAS  Google Scholar 

  17. Nam, H. et al. Exploring the diverse landscape of biaryl-containing peptides generated by cytochrome P450 macrocyclases. J. Am. Chem. Soc. 145, 22047–22057 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, Y. et al. P450-modified ribosomally synthesized peptides with aromatic cross-Links. J. Am. Chem. Soc. 145, 27325–27335 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, C. et al. P450-modified multicyclic cyclophane-containing ribosomally synthesized and post-translationally modified peptides. Angew. Chem. Int. Ed. 63, e202314046 (2024).

    Article  CAS  Google Scholar 

  20. Belin, P. et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106, 7426–7431 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clark, K. A. & Seyedsayamdost, M. R. Bioinformatic atlas of radical SAM enzyme-modified RiPP natural products reveals an isoleucine–tryptophan crosslink. J. Am. Chem. Soc. 144, 17876–17888 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, H. et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J. Am. Chem. Soc. 144, 18876–18886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, T. Q. N. et al. Post-translational formation of strained cyclophanes in bacteria. Nat. Chem. 12, 1042–1053 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Sydor, P. K. et al. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nat. Chem. 3, 388–392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohashi, M. et al. Biosynthesis of para-cyclophane-containing hirsutellone family of fungal natural products. J. Am. Chem. Soc. 143, 5605–5609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dorival, J. et al. Insights into a dual function amide oxidase/macrocyclase from lankacidin biosynthesis. Nat. Commun. 9, 3998 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang, G. et al. Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew. Chem. Int. Ed. 53, 4840–4844 (2014).

    Article  CAS  Google Scholar 

  29. Ding, W. et al. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc. Natl Acad. Sci. USA 113, 3521–3526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).

    Article  CAS  Google Scholar 

  31. Hudson, G. A., Zhang, Z., Tietz, J. I., Mitchell, D. A. & van der Donk, W. A. In vitro biosynthesis of the core scaffold of the thiopeptide thiomuracin. J. Am. Chem. Soc. 137, 16012–16015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian, Z. et al. An enzymatic [4 + 2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nat. Chem. Biol. 11, 259–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto, T. et al. Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4 + 2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J. Am. Chem. Soc. 137, 572–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Li, B. et al. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311, 1464–1467 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, H. et al. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat. Commun. 13, 4499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mydy, L. S. et al. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat. Chem. Biol. 20, 530–540 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Igarashi, Y. et al. Akaeolide, a carbocyclic polyketide from marine-derived Streptomyces. Org. Lett. 15, 5678–5681 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Nakashima, T. et al. Mangromicins A and B: structure and antitrypanosomal activity of two new cyclopentadecane compounds from Lechevalieria aerocolonigenes K10-0216. J. Antibiot. 67, 253–260 (2014).

    Article  CAS  Google Scholar 

  39. Zhou, T. et al. Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar. Drugs 13, 581–596 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goranovic, D. et al. Origin of the allyl group in FK506 biosynthesis. J. Biol. Chem. 285, 14292–14300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H.-B. et al. Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research. Nat. Protoc. 7, 479–499 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Li, S., Du, L. & Bernhardt, R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol. 28, 445–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Zou, Y. Z. et al. Crystal structures of phosphite dehydrogenase provide insights into nicotinamide cofactor regeneration. Biochemistry 51, 4263–4270 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Bullock, T. L., Clarkson, W. D., Kent, H. M. & Stewart, M. The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J. Mol. Biol. 260, 422–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Eberhardt, R. Y. et al. Filling out the structural map of the NTF2-like superfamily. BMC Bioinf. 14, 327 (2013).

    Article  Google Scholar 

  46. Kim, S. W. et al. High-resolution crystal structures of Δ5-3-ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry 36, 14030–14036 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Nakasako, M., Motoyama, T., Kurahashi, Y. & Yamaguchi, I. Cryogenic X-ray crystal structure analysis for the complex of scytalone dehydratase of a rice blast fungus and its tight-binding inhibitor, carpropamid: the structural basis of tight-binding inhibition. Biochemistry 37, 9931–9939 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Arand, M. et al. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 22, 2583–2592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sultana, A. et al. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J. 23, 1911–1921 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, B. et al. Enzyme-catalysed [6 + 4] cycloadditions in the biosynthesis of natural products. Nature 568, 122–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, S. et al. Biosynthesis of sordarin revealing a Diels–Alderase for the formation of the norbornene skeleton. Angew. Chem. Int. Ed. 61, e202205577 (2022).

    Article  CAS  Google Scholar 

  52. Drulyte, I. et al. Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase. IUCrJ 6, 1120–1133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niwa, K. et al. Biosynthesis of polycyclic natural products from conjugated polyenes via tandem isomerization and pericyclic reactions. J. Am. Chem. Soc. 145, 13520–13525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trotter, E. W., Collinson, E. J., Dawes, I. W. & Grant, C. M. Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4885–4892 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamauchi, Y., Hasegawa, A., Taninaka, A., Mizutani, M. & Sugimoto, Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J. Biol. Chem. 286, 6999–7009 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Dess, D. B. & Matrin, J. C. A useful 12-I-5 triacetoxyperiodinane (the Dess–Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc. 113, 7277–7287 (1991).

    Article  CAS  Google Scholar 

  57. He, B.-B. et al. Enzymatic pyran formation involved in xiamenmycin biosynthesis. ACS Catal. 9, 5391–5399 (2019).

    Article  CAS  Google Scholar 

  58. Minami, A. et al. Allosteric regulation of epoxide opening cascades by a pair of epoxide hydrolases in monensin biosynthesis. ACS Chem. Biol. 9, 562–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ye, Q. et al. Construction and coexpression of a polycistronic plasmid encoding carbonyl reductase and glucose dehydrogenase for production of ethyl (S)-4-chloro-3-hydroxybutanoate. Bioresour. Technol. 101, 6761–6767 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels−Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    Article  CAS  Google Scholar 

  61. Kennedy, C. R., Lin, S. & Jacobsen, E. N. The cation–π interaction in small-molecule catalysis. Angew. Chem. Int. Ed. 55, 12596–12624 (2016).

    Article  CAS  Google Scholar 

  62. Yamada, S. Cation−π interactions in organic synthesis. Chem. Rev. 118, 11353–11432 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Wlodawer, A. et al. Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes. Nat. Struct. Mol. Biol. 8, 442–446 (2001).

    Article  CAS  Google Scholar 

  65. Robinson, A. C., Castañeda, C. A., Schlessman, J. L. & García-Moreno, E. B. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein. Proc. Natl Acad. Sci. USA 111, 11685–11690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lehwess-Litzmann, A. et al. Twisted Schiff-base intermediates and substrate locale revise transaldolase mechanism. Nat. Chem. Biol. 7, 678–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Sautner, V. et al. Converting transaldolase into aldolase through swapping of the multifunctional acid–base catalyst. Biochemistry 54, 4475–4486 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, G. C. & Poelarends, G. J. Unlocking new reactivities in enzymes by iminium catalysis. Angew. Chem. Int. Ed. 61, e202203613 (2022).

    Article  CAS  Google Scholar 

  69. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  PubMed  Google Scholar 

  70. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, Z. et al. Iminium catalysis in natural Diels–Alderase. Nat. Catal. 8, 218–228 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Du, Y. L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Gefflaut, T., Blonski, C., Perie, J. & Willson, M. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog. Biophys. Mol. Biol. 63, 301–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Sheng, X. & Himo, F. Enzymatic Pictet–Spengler reaction: computational study of the mechanism and enantioselectivity of norcoclaurine synthase. J. Am. Chem. Soc. 141, 11230–11238 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Pfeiffer, M. & Nidetzky, B. Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids. Nat. Comm. 11, 6270 (2020).

    Article  CAS  Google Scholar 

  76. Ren, D., Lee, Y. H., Wang, S. A. & Liu, H.-W. Characterization of the oxazinomycin biosynthetic pathway revealing the key role of a nonheme iron-dependent mono-oxygenase. J. Am. Chem. Soc. 144, 10968–10977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, Z. & Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat. Catal. 3, 289–294 (2020).

    Article  CAS  Google Scholar 

  78. Yu, M. Z. et al. An artificial enzyme for asymmetric nitrocyclopropanation of α,β-unsaturated aldehydes-design and evolution. Angew. Chem. Int. Ed. 63, e202401635 (2024).

    Article  CAS  Google Scholar 

  79. Garrabou, X., Wicky, B. I. M. & Hilvert, D. Fast Knoevenagel condensations catalyzed by an artificial Schiff base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Leveson-Gower, R. B., Zhou, Z., Drienovská, I. & Roelfes, G. Unlocking iminium catalysis in artificial enzymes to create a Friedel–Crafts alkylase. ACS Catal. 11, 6763–6770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Akey, D. L. et al. Structural basis for macrolactonization by the pikromycin thioesterase. Nat. Chem. Biol. 2, 537–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Tsai, S.-C. et al. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc. Natl Acad. Sci. USA 98, 14808–14813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blankenstein, J. & Zhu, J. P. Conformation-directed macrocyclization reactions. Eur. J. Org. Chem. 2005, 1949–1964 (2005).

    Article  Google Scholar 

  84. Luo, M. & Wing, R. A. An improved method for plant BAC library construction. Methods Mol. Biol. 236, 3–20 (2003).

    CAS  PubMed  Google Scholar 

  85. Bierman, M. et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Winter, G. et al. DIALS as a toolkit. Protein Sci. 31, 232–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D 79, 449–461 (2023).

    Article  CAS  Google Scholar 

  88. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D 70, 2430–2443 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  93. Powell, H. R., Battye, T. G. G., Kontogiannis, L., Johnson, O. & Leslie, A. G. W. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm. Nat. Protoc. 12, 1310–1325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu, F. et al. Aquarium: an automatic data-processing and experiment information management system for biological macromolecular crystallography beamlines. J. Appl. Crystallogr. 52, 472–477 (2019).

    Article  CAS  Google Scholar 

  95. Adams, P. D., Mustyakimov, M., Afonine, P. V. & Langan, P. Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Crystallogr. D 65, 567–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.M.G. acknowledges funding support from the NSFC (82525108, 22193071, 22437003, W2412037 and 22377051), the Natural Science Foundation of Jiangsu Province (BK20253010 and BF2025075), Hainan Province Science and Technology Special Fund (ZDYF2023SHFZ107), Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China (JYB2025XDXM507) and the Fundamental Research Fund for the Central Universities (14380205). B.Z. acknowledges funding support from the NSFC (22277051) and the Natural Science Foundation of Jiangsu Province (BK20220123). We thank beamlines BL02U1, BL10U2 and BL19U1 of the Shanghai Synchrotron Radiation Facility for assistance with the X-ray data collection.

Author information

Authors and Affiliations

Authors

Contributions

C.L.L., B.Z. and H.M.G. conceived the idea for the study and designed the experiments. C.L.L., C.Y.Y. and Z.J.W. performed fermentation, compound isolation, chemical synthesis and all biochemical studies. B.Z., A.Z. and A.L. performed crystallization and solved all the structures. S.Y.W. and Z.Y.Y. assisted in NMR and MS data measurement and analysis. Y.I. and R.X.T. contributed materials and equipment. C.L.L, B.Z. and H.M.G. wrote the manuscript. B.Z. and H.M.G. supervised the work. All authors discussed the results and analysed the data.

Corresponding authors

Correspondence to Bo Zhang or Hui Ming Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Robin Teufel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 LC-MS/MS data of the trypsin-digested peptide fragment of CatM-5a adduct
Extended Data Table 2 Data collection, refinement and validation statistics

Extended Data Fig. 1 HPLC analysis of DMP oxidation reactions of 6a and 6b.

6a, 6b accumulated in ΔakaM mutant strain were probably derived from the reduction of 5a and 5b, by an endogenous reductase. DMP oxidation of 6a, 6b were carried out to obtain corresponding aldehyde products 5a and 5b. DMP: Dess–Martin periodinane.

Source data

Extended Data Fig. 2 Biochemical evidences of Michael addition catalysed by AkaM or its homologues.

Standard of 5b obtained from DMP oxidation of 6b (i); standard of 5a obtained from DMP oxidation of 6a (ii); standard of 8 (iii); HPLC analysis of non-enzymatic products 5 generated in AkaP1-catalysed reaction, which is conducted in an optimized condition (iv); high-revolution HPLC analysis of one-pot enzymatic reactions of AkaP1 and AkaM or its homologues (v-x).

Source data

Extended Data Fig. 3 In vitro kinetic studies of AkaM with different substrates.

a, In vitro enzymatic activity assays of AkaM using 5a as substrate. b, In vitro enzymatic activity assays of AkaM using 5b as substrate. n = 3 replicates and data are presented as mean ± s.e.m.

Source data

Extended Data Fig. 4 Crystal structures of NTF2-like proteins and characterized enzymatic reactions.

a, Crystal structures of AkaM, SacM, CatM and MicM. b, The superimposed image of the four homologues. c, Representative crystal structures of NTF2-like proteins, including NgnD, SdnG, SnoaL, and tKSI. d, Diverse enzymatic reactions catalysed by NTF2-like proteins.

Extended Data Fig. 5 Highly conserved residues in these NTF2-like proteins.

a, Residues surround the K113 and distance between K113, W31, and D101. b, Residues around K113 are highly conserved across these NTF2-like proteins. c, Residues located at the side of active tunnel in AkaM. d, Residues located at the side of active tunnel in CatM. e-f, The two different geometries of active side tunnel in AkaM and CatM. The AkaM, SacM, CatM, and MicM are shown in green, wheat, lime, and light blue, respectively.

Extended Data Fig. 6 Crystal structures of SacM in complex with substrate analogue 3 and 6b.

a, Close-up active site view of SacM-3. Compound 3 and the surrounding residues within 4 Å are shown in cyan and wheat, respectively. The polder (omit) electron density map of 3 (contoured at 3.0 σ) is displayed in grey mesh. b, Close-up view of the active site in SacM-6b. Compound 6b and the surrounding residues within 4 Å are shown in light pink and wheat, respectively. The polder (omit) electron density map of 6b (contoured at 3.0 σ) is shown in grey mesh. Compounds 3 and 6b are coloured as cyan and light pink, respectively, while SacM is shown in wheat.

Extended Data Fig. 7 Comparation of CatM-6b, CatM-W86A-6a and SacM-3 crystal structures.

a, Overlay of CatM-6b (lime) and CatM-W86A-6a (light blue). The two flexible loop regions are highlighted by red circles. b, the overlay of CatM-6b and CatM-W86A-6a shows a steric clash between W86 and ligand 6a. c, The crystal structure of CatM-W86A-6a. No water molecule was built within 4 Å of ligand 6a, by Phenix. d, The crystal structure of SacM-3. One water molecule was built in the active cavity by Phenix, which may function as general base for the deprotonation of key lysine. Similar water molecules were also observed in crystal structures of AkaM, SacM, CatM, MicM and SacM-6b.

Supplementary information

Supplementary Information

Experimental methods, Supplementary Tables 1–15 and Figs. 1–111.

Reporting Summary

Supplementary Data

Source data for Supplementary Fig. 23.

Source data

Source Data Fig. 1

Source data for HPLC analysis.

Source Data Fig. 2

Source data for HPLC analysis.

Source Data Fig. 3

Source data for enzymatic reaction analysis.

Source Data Extended Data Fig. 1

Source data for HPLC analysis.

Source Data Extended Data Fig. 2

Source data for HPLC analysis.

Source Data Extended Data Fig. 3

Source data for kinetic analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C.L., Zhang, B., Yuan, C.Y. et al. Structural and mechanistic insights into iminium-catalysed macrocyclization by nuclear transport factor 2-like enzymes. Nat. Synth (2026). https://doi.org/10.1038/s44160-025-00989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00989-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing