Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 203 results
Advanced filters: Author: Alexander M. Chong Clear advanced filters
  • AlphaGenome, a deep learning model that inputs 1-Mb DNA sequence to predict functional genomic tracks at single-base resolution across diverse modalities, outperforms existing models in variant effect prediction and enables comprehensive genomic analysis.

    • Žiga Avsec
    • Natasha Latysheva
    • Pushmeet Kohli
    ResearchOpen Access
    Nature
    Volume: 649, P: 1206-1218
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The tumor microenvironment influences the metabolic behavior of cancer cells. Here, using Dual Ribosome Profiling, the authors uncover a cancer-stromal cell interaction under glucose starvation that increases nutrient availability, in response to type I interferon. In addition, in vivo, immune checkpoint blockade triggers metabolic constraints in T cells, reducing their proliferation and cytotoxicity.

    • Daniela Aviles-Huerta
    • Rossella Del Pizzo
    • Fabricio Loayza-Puch
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Chalcogenide-based phase-change materials such as Ge2Sb2Te5could be useful for optical data storage, but the mechanism that ultimately limits their switching speed is unclear. Here, the authors use coherent phonon spectroscopy to better understand the non-thermal pathways between the two different phases.

    • Muneaki Hase
    • Paul Fons
    • Junji Tominaga
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-6
  • Using sequencing and haplotype-resolved assembly of 65 diverse human genomes, complex regions including the major histocompatibility complex and centromeres are analysed.

    • Glennis A. Logsdon
    • Peter Ebert
    • Tobias Marschall
    ResearchOpen Access
    Nature
    Volume: 644, P: 430-441
  • Porous materials are technologically important for a wide range of applications, such as catalysis and separation. Covalently bonded organic cages can now be assembled into crystalline microporous materials, and their porosity is found to be intrinsic to their molecular cage structure.

    • Tomokazu Tozawa
    • James T. A. Jones
    • Andrew I. Cooper
    Research
    Nature Materials
    Volume: 8, P: 973-978
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Optical spin defects in semiconductors are crucial for applications, but it is often difficult to establish their microscopic origin. A mechanism for the spin behaviour of a family of bright emitters in hexagonal boron nitride has now been identified.

    • Islay O. Robertson
    • Benjamin Whitefield
    • Jean-Philippe Tetienne
    Research
    Nature Physics
    Volume: 21, P: 1981-1987
  • A cross-ancestry meta-analysis of genome-wide association studies identifies association signals for stroke and its subtypes at 89 (61 new) independent loci, reveals putative causal genes, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as potential drug targets, and provides cross-ancestry integrative risk prediction.

    • Aniket Mishra
    • Rainer Malik
    • Stephanie Debette
    ResearchOpen Access
    Nature
    Volume: 611, P: 115-123
  • The distribution of Berry charge over a ring of exceptional points, called a Weyl exceptional ring, is experimentally demonstrated.

    • Alexander Cerjan
    • Sheng Huang
    • Mikael C. Rechtsman
    Research
    Nature Photonics
    Volume: 13, P: 623-628
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The control of translation during mitosis has an important role in cancer cell biology. Here the authors report that in mitotically arrested cancer cells, redistribution of ribosomes towards upstream open reading frames results in enhanced presentation of immunogenic peptides on cancer cell surface.

    • Alexander Kowar
    • Jonas P. Becker
    • Fabricio Loayza-Puch
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • LINE-1 activity was quantified in a large, pan-cancer dataset, finding locus-specific heterogeneity and new associations using a computational pipeline. A mathematical mediation model of p53 and L1 interactions was inferred. Somatic retrotransposition was seen in Li-Fraumeni Syndrome with heritable TP53 mutations.

    • Alexander Solovyov
    • Julie M. Behr
    • Benjamin D. Greenbaum
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.

    • Zhe Wang
    • Andrew Emmerich
    • Marcel den Hoed
    ResearchOpen Access
    Nature Genetics
    Volume: 54, P: 1332-1344
  • MRI data from more than 100 studies have been aggregated to yield new insights about brain development and ageing, and create an interactive open resource for comparison of brain structures throughout the human lifespan, including those associated with neurological and psychiatric disorders.

    • R. A. I. Bethlehem
    • J. Seidlitz
    • A. F. Alexander-Bloch
    ResearchOpen Access
    Nature
    Volume: 604, P: 525-533
  • Phase separation is being revealed as important in many biological processes. Most attempts to mimic and deconstruct this use engineered natural proteins. Now it is shown that de novo proteins can be designed from first principles to undergo liquid–liquid phase separation in cells, with the potential to organize multi-enzyme pathways.

    • Alexander T. Hilditch
    • Andrey Romanyuk
    • Derek N. Woolfson
    ResearchOpen Access
    Nature Chemistry
    Volume: 16, P: 89-97
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Genome-wide analyses of vaccine antibody responses in 2,499 infants from Uganda, South Africa and Burkina Faso identify associations between specific HLA genes and response to eight vaccines, providing insights that could be considered for population-adjusted vaccine design strategies.

    • Alexander J. Mentzer
    • Alexander T. Dilthey
    • Manjinder S. Sandhu
    ResearchOpen Access
    Nature Medicine
    Volume: 30, P: 1384-1394
  • PetaKit5D offers versatile processing workflows for light sheet microscopy data including performant image input/output, geometric transformations, deconvolution and stitching. The software is efficient and scalable to petabyte-size datasets.

    • Xiongtao Ruan
    • Matthew Mueller
    • Srigokul Upadhyayula
    ResearchOpen Access
    Nature Methods
    Volume: 21, P: 2342-2352
  • The RNA polymerases from T7 and related bacteriophages, in conjunction with elements of DNA and RNA viruses, can be used in novel ways for expression of genes in mammalian cells.

    • B. Moss
    • O. Elroy-Stein
    • T. R. Fuerst
    Comments & Opinion
    Nature
    Volume: 348, P: 91-92
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Stratified medicine promises to tailor treatment for individual patients, however it remains a major challenge to leverage genetic risk data to aid patient stratification. Here the authors introduce an approach to stratify individuals based on the aggregated impact of their genetic risk factor profiles on tissue-specific gene expression levels, and highlight its ability to identify biologically meaningful and clinically actionable patient subgroups, supporting the notion of different patient ‘biotypes’ characterized by partially distinct disease mechanisms.

    • Lucia Trastulla
    • Georgii Dolgalev
    • Michael J. Ziller
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-28
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Directed evolution is a process of mutation and artificial selection to breed biomolecules with new or improved activity. Here the authors develop a directed evolution platform (PROTein Evolution Using Selection; PROTEUS) that enables the generation of proteins with enhanced or novel activities within a mammalian context.

    • Alexander J. Cole
    • Christopher E. Denes
    • G. Gregory Neely
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • John Chambers, Jaspal Kooner, Pim van der Harst, Shyong Tai, Paul Elliott, Jiang He, Norihiro Kato and colleagues performed a genome-wide association study of blood pressure phenotypes in individuals of European, East Asian and South Asian ancestry. They find trait-associated SNPs at 12 loci, some of which are associated with methylation at nearby CpG sites.

    • Norihiro Kato
    • Marie Loh
    • John C Chambers
    Research
    Nature Genetics
    Volume: 47, P: 1282-1293
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In order to design cancer immune therapies, it is important to understand how tumours evade the immune response that is mounted against them. Authors here analyse the distribution and properties of immune cells in hepatocellular carcinoma and describe a progressive tumour-immune co-evolution programme from early to late stage cancer.

    • Phuong H. D. Nguyen
    • Martin Wasser
    • Valerie Chew
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13