Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 458 results
Advanced filters: Author: Benjamin L. Walter Clear advanced filters
  • Insulin signaling plays a crucial role in coordinating skeletal development with whole‑body energy metabolism. Here, the authors use phosphoproteomics to show insulin-signaling rewiring in aged, insulin-resistant bone and identify defective phosphorylation of AFF4 as a key mechanism for regulating gene-specific transcriptional activation.

    • Mriga Dutt
    • Luoping Liao
    • Benjamin L. Parker
    ResearchOpen Access
    Nature Communications
    P: 1-23
  • Understanding snow density is vital for climate science and hazard prediction. The authors present an optical approach that yields insight into light-snow interactions and can be used to convert reflectance images of snow into density information, offering rapid, high-resolution profiles for field measurements.

    • Lars Mewes
    • Henning Löwe
    • Benjamin Walter
    ResearchOpen Access
    Communications Physics
    P: 1-8
  • The authors propose a Generalized Latent Equilibrium framework for fully local credit assignment in physical, dynamical neuronal networks such as the brain. By exploiting dendritic structure and prospective coding in cortical neurons, it enables an online approximation of backpropagation through space and time.

    • Benjamin Ellenberger
    • Paul Haider
    • Mihai A. Petrovici
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-23
  • T cells can recognise lipid antigen in the context of CD1d molecules. Here, the authors show that γδ T cell activation in response to CD1d differs from that of αβ T cells and determine the structure of a γδ T cell receptor that binds to CD1d independently of the presented lipid.

    • Michael T. Rice
    • Sachith D. Gunasinghe
    • Jamie Rossjohn
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Benjamin N. Bhawal examines the enigmatic history of ribose in chemistry, its multifaceted structure, and its role in the origin of life and the design of future therapeutics.

    • Benjamin N. Bhawal
    Comments & Opinion
    Nature Chemistry
    Volume: 17, P: 1798
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Geospatial estimates of the prevalence of anemia in women of reproductive age across 82 low-income and middle-income countries reveals considerable heterogeneity and inequality at national and subnational levels, with few countries on track to meet the WHO Global Nutrition Targets by 2030.

    • Damaris Kinyoki
    • Aaron E. Osgood-Zimmerman
    • Simon I. Hay
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1761-1782
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A high-resolution, global atlas of mortality of children under five years of age between 2000 and 2017 highlights subnational geographical inequalities in the distribution, rates and absolute counts of child deaths by age.

    • Roy Burstein
    • Nathaniel J. Henry
    • Simon I. Hay
    ResearchOpen Access
    Nature
    Volume: 574, P: 353-358
  • Cas12a represents the next generation of gene editing. Here, the authors present the generation and validation of a Cas12a transgenic mouse model. Additionally, the authors create whole-genome Cas12a knockout libraries, and demonstrate their utility across multiple in vitro and in vivo screens.

    • Wei Jin
    • Yexuan Deng
    • Marco J. Herold
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A phenotypic screen led to the identification of potent inhibitors of mouse BAK-driven apoptosis. The compounds interact with VDAC2 and stabilize its interaction with BAK, blocking apoptosis at an early stage to preserve long-term cell survival.

    • Mark F. van Delft
    • Stephane Chappaz
    • Benjamin T. Kile
    Research
    Nature Chemical Biology
    Volume: 15, P: 1057-1066
  • Small intestinal neuroendocrine tumours (siNETs) are rare bowel tumors generally considered to be a single entity. Here, the authors perform a multiomics analysis of siNETs and reveal four distinct molecular groups with clinical relevance, including groups linked to differentiation patterns, immunity, and mesenchymal properties.

    • Céline Patte
    • Roxane M. Pommier
    • Benjamin Gibert
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Certain specific antigens have been shown to activate T cells in an MHC independent manner. Here the authors show a phycoerythrin reactive mouse TCR which recognises native protein and characterise the molecular nature of this interaction and that this specific TCR can be selected in the thymus.

    • Catarina F. Almeida
    • Benjamin S. Gully
    • Dale I. Godfrey
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • An adjuvanted SARS-CoV-2 spike-ferritin nanoparticle vaccine can elicit antibodies with relatively broad sarbecovirus activity in non-human primates. Here, the authors isolate and structurally characterize several monoclonal antibodies providing insights into the targeted epitopes and broad reactivity.

    • Rajeshwer S. Sankhala
    • Kerri G. Lal
    • M. Gordon Joyce
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Observations of a fast X-ray transient reveal that it is a gamma-ray-burst explosion from a very distant galaxy that emits light with the wavelength necessary to drive cosmic reionization, the last major phase change in the history of the Universe.

    • Andrew J. Levan
    • Peter G. Jonker
    • Tayyaba Zafar
    Research
    Nature Astronomy
    Volume: 9, P: 1375-1386
  • The authors defined a roadmap for investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders. Their proof-of-concept study using the largest available common variant data sets for schizophrenia and volumes of several (mainly subcortical) brain structures did not find evidence of genetic overlap.

    • Barbara Franke
    • Jason L Stein
    • Patrick F Sullivan
    Research
    Nature Neuroscience
    Volume: 19, P: 420-431
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined and the pathophysiology unknown. Here, the authors conduct deep phenotyping of a cohort of PI-ME/CFS patients.

    • Brian Walitt
    • Komudi Singh
    • Avindra Nath
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-29
  • The Mass Spectrometry Query Language (MassQL) is an open-source language that enables instrument-independent searching across mass spectrometry data for complex patterns of interest via concise and expressive queries without the need for programming skills.

    • Tito Damiani
    • Alan K. Jarmusch
    • Mingxun Wang
    ResearchOpen Access
    Nature Methods
    Volume: 22, P: 1247-1254
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24