Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 186 results
Advanced filters: Author: Daniel R. Rubio Clear advanced filters
  • Mapping of the neutrophil compartment using single-cell transcriptional data from multiple physiological and patological states reveals its organizational architecture and how cell state dynamics and trajectories vary during health, inflammation and cancer.

    • Daniela Cerezo-Wallis
    • Andrea Rubio-Ponce
    • Iván Ballesteros
    ResearchOpen Access
    Nature
    Volume: 649, P: 1003-1012
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Anisotropic hybridization between conduction and unpaired f electrons is rarely observed. Now, a lanthanide-based two-dimensional compound exhibits nodal hybridization, giving rise to heavy-fermion behaviour.

    • Simon Turkel
    • Victoria A. Posey
    • Abhay N. Pasupathy
    Research
    Nature Physics
    Volume: 21, P: 1949-1956
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • TGFβ superfamily proteins can affect cellular differentiation, thermogenesis, and fibrosis in mammalian adipose tissue. Here the authors described a role for the TGFβ superfamily protein GDF3 in the regulation of lipolysis, glucose tolerance and glycemic variability in mice.

    • Nagasuryaprasad Kotikalapudi
    • Deepti Ramachandran
    • Alexander S. Banks
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The authors use time-resolved scanning near-field optical microscopy to probe the ultrafast excitonic processes and their impact on waveguide operation in transition metal dichalcogenide crystals. They observe significant modulation of the complex index by monitoring waveguide modes on the fs time scale, and identify both coherent and incoherent manipulations of WSe2 excitonic resonances.

    • Aaron J. Sternbach
    • Simone Latini
    • D. N. Basov
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-6
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The authors present electrical transport-based evidence of generalized Wigner crystal states in twisted bilayer MoSe2 at fractional electron fillings ν = 2/5, 1/2, 3/5, 2/3, 8/9, 10/9, and 4/3, together with a Mott state at ν = 1. They further demonstrate continuous quantum melting transitions in a multi-parameter space of electron density, displacement and magnetic fields.

    • Qi Jun Zong
    • Haolin Wang
    • Lei Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • It is unclear whether stream detritivore diversity enhances decomposition across climates. Here the authors manipulate litter diversity and examine detritivore assemblages in a globally distributed stream litterbag experiment, finding a positive diversity-decomposition relationship stronger in tropical streams, where detritivore diversity is lower.

    • Luz Boyero
    • Naiara López-Rojo
    • Catherine M. Yule
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-11
  • A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

    • Konrad J. Karczewski
    • Laurent C. Francioli
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 581, P: 434-443
  • Incomplete plumbing affects over a million people in the USA. Analysis of individual and household data for the 2015–2019 period from the US–Mexico border reveals the unequal nature of plumbing poverty in the borderlands and provides insight for future planning.

    • Ricardo Rubio
    • Sara E. Grineski
    • Yolanda J. McDonald
    Research
    Nature Water
    Volume: 3, P: 793-805
  • Plasma extracellular vesicles contain quantifiable amounts of TDP-43 and full-length tau, allowing the accurate assessment of pathology in frontotemporal dementia, frontotemporal dementia spectrum disorders and amyotrophic lateral sclerosis.

    • Madhurima Chatterjee
    • Selcuk Özdemir
    • Anja Schneider
    ResearchOpen Access
    Nature Medicine
    Volume: 30, P: 1771-1783
  • A large empirical assessment of sequence-resolved structural variants from 14,891 genomes across diverse global populations in the Genome Aggregation Database (gnomAD) provides a reference map for disease-association studies, population genetics, and diagnostic screening.

    • Ryan L. Collins
    • Harrison Brand
    • Michael E. Talkowski
    ResearchOpen Access
    Nature
    Volume: 581, P: 444-451
  • A genomic constraint map for the human genome constructed using data from 76,156 human genomes from the Genome Aggregation Database shows that non-coding constrained regions are enriched for regulatory elements and variants associated with complex diseases and traits.

    • Siwei Chen
    • Laurent C. Francioli
    • Konrad J. Karczewski
    Research
    Nature
    Volume: 625, P: 92-100
  • The authors demonstrate a graphene/CrSBr heterostructure exhibiting anisotropic surface plasmon polariton (SPP) propagation in the mid-infrared and terahertz range. Charge transfer at the interface directs SPPs along the quasi-1D chains that compose each CrSBr layer, with propagation lengths varying by an order of magnitude between the two in-plane crystallographic axes.

    • Daniel J. Rizzo
    • Eric Seewald
    • D. N. Basov
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Γ and K valleys in twisted transition metal dichalcogenides have emerged as highly tunable knobs for accessing different correlated electronic states in solid-state devices. Here, the authors tune a Mott-Hubbard state to a charge-transfer insulator state in twisted double-bilayer WSe2.

    • LingNan Wei
    • Qingxin Li
    • Lei Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • De novo designed interleukin-4 mimetics were engineered that induce biased signaling activation and exhibit high thermal stability. These mimetics offer insight into cytokine signaling and can be directly incorporated into 3D-printed biomaterials

    • Huilin Yang
    • Umut Y. Ulge
    • Jamie B. Spangler
    Research
    Nature Chemical Biology
    Volume: 19, P: 1127-1137
  • Exome sequencing data from 60,706 people of diverse geographic ancestry is presented, providing insight into genetic variation across populations, and illuminating the relationship between DNA variants and human disease.

    • Monkol Lek
    • Konrad J. Karczewski
    • Daniel G. MacArthur
    ResearchOpen Access
    Nature
    Volume: 536, P: 285-291
  • Neuroblastoma is an aggressive childhood cancer with poor prognosis and limited therapeutic options. Here the authors report the results of a phase 2 trial of the anti-GD2 monoclonal antibody naxitamab plus GM-CSF for relapsed or refractory high-risk neuroblastoma.

    • Jaume Mora
    • Godfrey C. F. Chan
    • Brian H. Kushner
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Here, a combined experiment-theory framework based on different nano-imaging techniques and first-principle calculations is used to analyse the shapes of moiré patterns in twisted van der Waals structures, enabling an accurate description of the coupling between the atomically thin layers.

    • Dorri Halbertal
    • Nathan R. Finney
    • D. N. Basov
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8