Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 594 results
Advanced filters: Author: Sean K. Wang Clear advanced filters
  • Polymer thin films that emit and absorb circularly polarised light are promising in achieving important technological advances, but the origin of the large chiroptical effects in such films has remained elusive. Here the authors demonstrate that in non-aligned polymer thin films, large chiroptical effects are caused by magneto-electric coupling, not structural chirality as previously assumed.

    • Jessica Wade
    • James N. Hilfiker
    • Matthew J. Fuchter
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • A broad systems-level approach is necessary to understand the intricate etiology of clinical complications from atherosclerotic cardiovascular disease. Here, the authors reconstruct a causal network of circulating proteins and identify subnetworks linked to future risk of myocardial infarction and other cardiometabolic traits.

    • Sean Bankier
    • Valborg Gudmundsdottir
    • Valur Emilsson
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-20
  • Vapour-phase methods are promising for nanomaterial synthesis but the vaporization of different precursors for the synthesis of a broad nanomaterial space is challenging. Here electrified vapour deposition generates ultrahigh-temperature, high-flux atomic vapour at atmospheric pressure to rapidly vaporize diverse precursors, enabling the synthesis of multi-elemental nanomaterials with uniform compositions and tunable structures.

    • Xizheng Wang
    • Ning Liu
    • Liangbing Hu
    Research
    Nature Synthesis
    Volume: 5, P: 14-26
  • Covalent KRAS inhibitors show initial responses but resistance limits durability. Here drug-induced hapten peptides are identified and characterized, enabling production of high affinity, cross-HLA T cell engagers that stabilize low density hapten peptide MHCs to drive tumor-specific killing.

    • Lorenzo Maso
    • Sarah A. Mosure
    • Lauren E. Stopfer
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • An inherently explainable AI trained on 1,015 expert-annotated prostate tissue images achieved strong Gleason pattern segmentation while providing interpretable outputs and addressing interobserver variability in pathology.

    • Gesa Mittmann
    • Sara Laiouar-Pedari
    • Titus J. Brinker
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A combination of genome-wide functional screening, imaging and chromatin profiling identifies a new class of highly prevalent genomic elements that help retain extrachromosomal DNA copies in dividing cells and persist across generations.

    • Venkat Sankar
    • King L. Hung
    • Howard Y. Chang
    ResearchOpen Access
    Nature
    Volume: 649, P: 152-160
  • Disassembly of three-dimensionally ordered materials generates nanoparticles with new structural and physicochemical properties. Here the authors show a fragmentation strategy applied to a perovskite material leading to nanostructures with improved catalytic activity in the methane combustion.

    • Yuan Wang
    • Hamidreza Arandiyan
    • Rose Amal
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Radiotherapy induces expression of the EGFR ligand amphiregulin, which promotes metastasis growth at remote sites in mouse models and human patients by shifting myeloid cells towards an immunosuppressive state.

    • András Piffkó
    • Kaiting Yang
    • Ralph R. Weichselbaum
    Research
    Nature
    Volume: 643, P: 810-819
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A pangenome of oat, assembled from 33 wild and domesticated oat lines, sheds light on the evolution and genetic diversity of this cereal crop and will aid genomics-assisted breeding to improve productivity and sustainability.

    • Raz Avni
    • Nadia Kamal
    • Martin Mascher
    ResearchOpen Access
    Nature
    Volume: 649, P: 131-139
  • A study of several longitudinal birth cohorts and cross-sectional cohorts finds only moderate overlap in genetic variants between autism that is diagnosed earlier and that diagnosed later, so they may represent aetiologically different conditions.

    • Xinhe Zhang
    • Jakob Grove
    • Varun Warrier
    ResearchOpen Access
    Nature
    Volume: 646, P: 1146-1155
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The blood-brain barrier (BBB) regulates the extracellular composition of the central nervous system (CNS), but it is not known whether its properties differ across CNS regions. Here, the authors show in mice that the BBB exhibits regional specializations, and that such specializations can be important for the function of specific neural circuits.

    • Marie Blanchette
    • Kaja Bajc
    • Richard Daneman
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • SARS-CoV-2 viruses are known to hijack human proteins in order to facilitate their own virulence and replication. In this study, Liu and colleagues present structural analysis of how this phenomenon occurs between SARS-CoV-2 viral envelope protein and human PALS1. The findings provide insights in to viral-host recognition.

    • Jin Chai
    • Yuanheng Cai
    • Qun Liu
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Magnetic Weyl semimetals in the 2D limit may behave like 2D Chern insulators and host the quantum anomalous Hall effect at high temperatures. Here, the authors report the observation of linearly dispersing topological states confined to the edges of the kagome Co3Sn terraces in the magnetic Weyl system Co3Sn2S2.

    • Sean Howard
    • Lin Jiao
    • Vidya Madhavan
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The serine protease factor Xa (FXa) is upregulated in COVID-19 patients and functions in the coagulation pathway. Here, Dong et al characterise the basis of its antiviral activity in the context of SARS-CoV-2 pandemic variants.

    • Wenjuan Dong
    • Jing Wang
    • Jianhua Yu
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-18
  • Spatial cell distribution within a tissue microenvironment is a rapidly advancing field. Here, authors assess three commercially available single-cell resolution spatial transcriptomics approaches (CosMx, MERFISH, and Xenium) to inform which technology outperforms for immune profiling of solid tumors using patient samples.

    • Nejla Ozirmak Lermi
    • Max Molina Ayala
    • Luisa M. Solis Soto
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Lowering the levels of coagulation factor XII may prevent thrombosis without increasing the risk of bleeding. Here, Haj et al. use a large human dataset to show that this is the case for people carrying mutations that lower the levels of factor XII.

    • Amelia K. Haj
    • David S. Paul
    • Pavan K. Bendapudi
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Genome-wide association analysis of an improved telomere length score, calculated from quantitative PCR and whole-genome sequencing measurements in 462,666 individuals in the UK Biobank, identifies novel genes and variants underlying this trait.

    • Oliver S. Burren
    • Ryan S. Dhindsa
    • Slavé Petrovski
    ResearchOpen Access
    Nature Genetics
    Volume: 56, P: 1832-1840
  • How brain networks organize and interact based on their hierarchical position remains poorly understood. Momi, Wang et al find that high-order brain networks show stronger responses to stimulation and greater dependence on recurrent feedback compared to low-order networks.

    • Davide Momi
    • Zheng Wang
    • John D. Griffiths
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Genome-wide analyses identify variants associated with sinus node dysfunction, distal conduction disease and pacemaker implantation, implicating ion channel function, cardiac developmental programs and sarcomeric structure in bradyarrhythmia susceptibility.

    • Lu-Chen Weng
    • Joel T. Rämö
    • Steven A. Lubitz
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 53-64
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14