Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of SARS-CoV-2 spike binding to ACE2 through conformational selection

Abstract

The first step of SARS-CoV-2 infection involves the interaction between the viral trimeric spike protein (S) and the host angiotensin-converting enzyme 2 (ACE2). The receptor-binding domain (RBD) of S adopts two conformations: open and closed, respectively accessible and inaccessible to ACE2. Although these changes surely affect ACE2 binding, a quantitative description of the underlying mechanisms has remained elusive. Here we visualize RBD opening and closing using high-speed atomic force microscopy, gaining access to the corresponding transition rates. We also probe the S/ACE2 interaction at the ensemble level with biolayer interferometry and at the single-molecule level with atomic force microscopy and magnetic tweezers, evidencing that RBD dynamics hinder ACE2 binding but have no effect on unbinding. The resulting modulation is quantitatively predicted by a conformational selection model in which each S protomer behaves independently. Our work thus reveals a molecular mechanism by which RBD accessibility and binding strength can be tuned separately, providing hints to better understand the joint evolution of immune evasion and infectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule real-time visualization of the conformational dynamics of RBD opening and closing within S trimers.
Fig. 2: Ensemble measurements of the kinetic and thermodynamic parameters for ACE2 binding to RBD, either isolated or embedded within an S trimer.
Fig. 3: Single-molecule measurements of the dissociation kinetics and force response for ACE2 bound to the RBD, either isolated or embedded within an S trimer.
Fig. 4: Single-molecule measurements of the kinetic and thermodynamic parameters for ACE2 binding to the RBD, either isolated or embedded within an S trimer.

Similar content being viewed by others

Data availability

The data reported in this study are available within the article and its Supplementary Materials file. Raw data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used for image processing and analysis is available on the GitHub repository (source code: https://github.com/centuri-engineering/ProtruDe/).

References

  1. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Henderson, R. et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 27, 925–933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao, H. et al. Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730–738.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benton, D. J. et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 588, 327–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, W. et al. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein–protein interaction. Biophys. J. 120, 1011–1019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, W. et al. Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Res. 31, 1047–1060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koehler, M. et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. 12, 6977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, R. et al. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nat. Commun. 13, 7926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Díaz-Salinas, M. A. et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 11, e75433 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, C.-L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Xiong, X. et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27, 934–941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benton, D. J. et al. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2022586118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin, W. et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 375, 1048–1053 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Gur, M. et al. Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. J. Chem. Phys. 153, 075101 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Turoňová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zimmerman, M. I. & Bowman, G. SARS-CoV-2 simulations go exascale to capture spike opening and reveal cryptic pockets across the proteome. Biophys. J. 120, 651–659 (2021).

    Article  Google Scholar 

  26. Choi, Y. K. et al. Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J. Chem. Theory Comput. 17, 2479–2487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, M. et al. Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe 28, 880–891.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serrão, V. H. B. & Lee, J. E. FRETing over SARS-CoV-2: conformational dynamics of the spike glycoprotein. Cell Host Microbe 28, 778–779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, Z. et al. SARS-CoV-2 variants increase kinetic stability of open spike conformations as an evolutionary strategy. mBio 13, e03227-21 (2022).

    Article  PubMed Central  Google Scholar 

  30. Hoffmann, D. et al. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J. 40, e108375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim, K. et al. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. J. Extracell. Vesicles 10, e12170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amyot, R., Marchesi, A., Franz, C. M., Casuso, I. & Flechsig, H. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images. PLoS Comput. Biol. 18, e1009970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCallum, M., Walls, A. C., Bowen, J. E., Corti, D. & Veesler, D. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat. Struct. Mol. Biol. 27, 942–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gobeil, S. M.-C. et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 34, 108630 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Qu, K. et al. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. PLoS Pathog. 18, e1010583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. McCallum, M. et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 375, 864–868 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Cerutti, G. et al. Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell Rep. 38, 110428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cui, Z. et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871.e13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wieczór, M., Tang, P. K., Orozco, M. & Cossio, P. Omicron mutations increase interdomain interactions and reduce epitope exposure in the SARS-CoV-2 spike. iScience 26, 105981 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guo, L. et al. Engineered trimeric ACE2 binds viral spike protein and locks it in ‘Three-up’ conformation to potently inhibit SARS-CoV-2 infection. Cell Res. 31, 98–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Pak, A. J., Yu, A., Ke, Z., Briggs, J. A. G. & Voth, G. A. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core. Nat. Commun. 13, 1002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J. et al. Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Rep. 39, 110729 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bauer, M. S. et al. Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nat. Nanotechnol. 19, 399–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Rico, F., Russek, A., González, L., Grubmüller, H. & Scheuring, S. Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc. Natl Acad. Sci. USA 116, 6594–6601 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valotteau, C., Sumbul, F. & Rico, F. High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers. Biophys. Rev. 11, 689–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cossio, P., Hummer, G. & Szabo, A. Kinetic ductility and force-spike resistance of proteins from single-molecule force spectroscopy. Biophys. J. 111, 832–840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kostrz, D. et al. A modular DNA scaffold to study protein–protein interactions at single-molecule resolution. Nat. Nanotechnol. 14, 988–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Bell, G. I. Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 200, 618–627 (1978).

    Article  CAS  PubMed  Google Scholar 

  54. De Souza, A. S. et al. Molecular dynamics analysis of fast-spreading severe acute respiratory syndrome coronavirus 2 variants and their effects on the interaction with human angiotensin-converting enzyme 2. ACS Omega 7, 30700–30709 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prévost, J. et al. Impact of temperature on the affinity of SARS-CoV-2 spike glycoprotein for host ACE2. J. Biol. Chem. 297, 101151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Forest-Nault, C. et al. Impact of the temperature on the interactions between common variants of the SARS-CoV-2 receptor binding domain and the human ACE2. Sci. Rep. 12, 11520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gong, S. Y. et al. Temperature influences the interaction between SARS-CoV-2 spike from Omicron subvariants and human ACE2. Viruses 14, 2178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rankl, C. et al. Multiple receptors involved in human rhinovirus attachment to live cells. Proc. Natl Acad. Sci. USA 105, 17778–17783 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stransky, F. et al. in Methods in Enzymology Vol. 694 (eds Shon, M. J. & Yoon, T.-Y.) 51–82 (Academic Press, 2024).

  61. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Di Cera, E. Mechanisms of ligand binding. Biophys. Rev. 1, 011303 (2020).

    Article  Google Scholar 

  63. Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739–751.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weissman, D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mannar, D. et al. SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization. Nat. Commun. 13, 4696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Kumar, S. et al. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity. J. Virol. 97, e00922–e00923 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Temmam, S. et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Gámbaro, F. et al. Introductions and early spread of SARS-CoV-2 in France, 24 January to 23 March 2020. Eurosurveillance 25, 2001200 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Güthe, S. et al. Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin. J. Mol. Biol. 337, 905–915 (2004).

    Article  PubMed  Google Scholar 

  73. Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heinz, F. X. & Stiasny, K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. npj Vaccines 6, 104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, C. et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat. Commun. 12, 264 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoeler, C. et al. Ultrastable cellulosome-adhesion complex tightens under load. Nat. Commun. 5, 5635 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Jobst, M. A., Schoeler, C., Malinowska, K. & Nash, M. A. Investigating receptor-ligand systems of the cellulosome with AFM-based single-molecule force spectroscopy. J. Vis. Exp. 20, 50950 (2013).

    Google Scholar 

  79. Wang, Y. J. et al. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys. J. 122, 2518–2530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Revyakin, A., Ebright, R. H. & Strick, T. R. Single-molecule DNA nanomanipulation: improved resolution through use of shorter DNA fragments. Nat. Methods 2, 127–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Duboc, C., Fan, J., Graves, E. T. & Strick, T. R. in Methods in Enzymology Vol. 582 (eds Spies, M. & Chemla, Y. R.) 275–296 (Academic Press, 2017).

  82. Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Backovic (UVS, Institut Pasteur, Paris) for logistics; M. A. Nash (Chemistry Department, University of Basel) for the gift of the Sfp plasmid; P. England and the Biophysics Facility (Institut Pasteur) for access to the BLI; D. Joshi (RCAS, Academia Sinica, Taipei) for advice on PyMOL; P.-H. Puech and L. Limozin (LAI, Aix-Marseille University) for insightful discussions; and J. Reguera (AFMB, Aix-Marseille University) for critical reading of the paper. This project received funding from the Human Frontier Science Program (HFSP, grant number RGP0056/2018 to F.R.), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 772257 to F.R.), the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant number 895819 to C.V.), the Turing Centre for Living Systems (Centuri), PSL-Valorisation (grant J-DNA 2 to C.G. and T.S.), Labex IBEID (grant ANR-10-LABX-62-IBEID to F.A.R.), ANRS-MIE project EMERGEN (grant ANRS0151 to F.A.R.) and the Pasteur Coronavirus Task-Force (grants Allospike and TooLab to F.A.R.). The Molecular Motors and Machines team at IBENS has received a ‘Coup d’élan’ from the Fondation Bettencourt Schueller and is also an ‘Equipe labellisée’ by the Ligue Nationale Contre le Cancer. D.K. was supported by the PSL Institut de Convergence QLife. F. Stransky benefited from a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche. The project leading to this publication received funding from France 2030, the French Government programme managed by the French National Research Agency (ANR-16-CONV-0001), and from Excellence Initiative of Aix-Marseille University—A*MIDEX.

Author information

Authors and Affiliations

Authors

Contributions

C.G., T.S., F.A.R. and F.R. supervised the research. I.F., A.M., E.B. and A.S. designed and produced the ACE2, RBD and spike proteins. P.S. and F. Sumbul acquired the HS-AFM videos. P.S. and T.B. developed and applied the ImageJ macros to extract the conformational trajectories from HS-AFM videos. F.R. analysed the conformational trajectories. C.G. and F.R. developed the conformational selection model and implemented it for data analysis. I.F., E.B. and P.G.-C. conducted the BLI measurements. C.V. performed the AFM and HS-AFM SMFS experiments and analysed the data with F.R. D.K. synthesized J-DNA and coupled them to the molecular partners. D.K. and J.R.P. realized the MT measurements. F. Stransky developed the software for analysing the constant-force MT experiments. P.S., C.G., C.V. and F.R. wrote the paper with the contributions of all the authors.

Corresponding authors

Correspondence to Charlie Gosse, Terence Strick, Felix A. Rey or Felix Rico.

Ethics declarations

Competing interests

PSL-Valorisation has submitted a patent related to the J-DNA forceps (PCT FR2018/053533) with D.K., T.S. and C.G. among the inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jan Lipfert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Real-time RBD conformations in \({\mathbf{S}}_{\mathbf{Wuhan}}^{\mathbf{f-}}\).

Consecutive images from an HS-AFM video depicting S trimer in various states, as indicated in the bottom left corner of the images. The white arrowhead indicates the stalk region of the spike, while the yellow arrowheads indicate the opening of RBDs. The acquisition rate of the video was 2.5 fps. These images were processed with a set of user-written macros (see Methods).

Extended Data Fig. 2 Conformational dynamics of RBD opening and closing in \({\mathbf{S}}_{\mathbf{Wuhan}}^{\mathbf{f-,2C,2P}}\).

(a) Relative occupancy histogram (mean ± s.e.m., blue bars) and associated fits to the binomial distribution (red lines) for the four \({S}_{i}\) states, i indicating the number of opened RBDs. (b) Transition density plot (TDP) showing the fraction of transition events between the different states. (c) Distributions of the \({\Delta t}_{i,\;j}\) dwell times for the four most populated \({S}_{i}\) to \({S}_{j}\) transitions. Red lines show the global exponential fits used to extract the \({\tau }_{i,\;j}\) decays (see Extended Data Table 1 for results and Supplementary Table 2 for statistics).

Source data

Extended Data Fig. 3 Real-time RBD conformations in \({\mathbf{S}}_{\mathbf{Wuhan}}^{\mathbf{f-,6P}}\).

Consecutive images from an HS-AFM video depicting S trimer in various states, as indicated in the bottom left corner of the images. The acquisition rate of the video was 1.0 fps. Timestamps are displayed in the top right corner of the image. The white arrowhead indicates the stalk region of the spike, while the yellow arrowheads indicate the opening of RBDs. These images were processed with a set of user-written macros (see Methods).

Extended Data Fig. 4 Real-time RBD conformations in \({\mathbf{S}}_{\mathbf{Omicron}}^{\mathbf{f-,6P}}\).

Consecutive images from an HS-AFM video depicting S trimer in various states, as indicated in the bottom left corner of the images. The white arrowhead indicates the stalk region of the spike, while the yellow arrowheads indicate the opening of RBDs. The acquisition rate of the video was 1.0 fps. These images were processed with a set of user-written macros (see Methods).

Extended Data Fig. 5 Effect of the temperature correction on the rate constants measured in this study for the dissociation of ACE2 from the wild-type RBD.

Experiments involved either RBD alone or spike trimers (see Supplementary Table 5 for numerical values). (a) Data issued from acquisitions realized at various temperatures \({T}_{{meas}}\) (in linear scale, ± s.e.). (b) Same data extrapolated at 22 °C using the Arrhenius law and an activation energy equal to 90 kJ mol−1. (c) Same extrapolation but with an activation energy equal to 125 kJ mol−1.

Extended Data Fig. 6 Effect of the temperature correction on the rate constants reported in the single-molecule literature for the dissociation of ACE2 from the wild-type RBD.

Experiments involved either RBD alone, S1 alone, or spike trimers (see Table Supplementary Table 6 for numerical values). (a) Data issued from acquisitions realized at various temperatures \({T}_{{meas}}\) (in both logarithmic and linear scales, ± s.e. for the Saha et al. data). (b) Same data extrapolated at 22 °C using the Arrhenius law and an activation energy equal to 90 kJ mol−1. (c) Same extrapolation but with an activation energy equal to 125 kJ mol−1.

Extended Data Fig. 7 Representative images of an HS-AFM video showing binding of an ACE2 to S trimer \({\mathbf{S}}_{\mathbf{Wuhan}}^{\mathbf{f-}}\).

Free ACE2 is indicated by a cyan arrowhead and bound ACE2 (that cannot be distinguished from the RBD to which it is bound) by green ones. The spike stalk region is indicated by white and open RBDs by yellow ones. Timestamps are displayed in the top right corner of each image. On the left, a simulated AFM image is generated from the cryo-EM structure of one ACE2 bound to one S trimer (PDB: 7knb) to illustrate the relative positioning of ACE2 and RBD in the experimental observation.

Extended Data Fig. 8 Representative images of an HS-AFM video showing ACE2 association and dissociation from an S trimer \({\mathbf{S}}_{\mathbf{Wuhan}}^{\mathbf{f-}}\) already interacting with two other ACE2.

Unbound ACE2 are indicated by cyan arrowheads, bound ACE2 by green arrowheads, the stalk region by a white arrowhead, and open RBDs by yellow arrowheads. Timestamps are displayed in the top right corner of each image. The relative orientation of the ACE2 to the RBD causes the RBD to appear brighter compared to the other RBDs without ACE2 binding. On the left, a simulated AFM image is generated from the cryo-EM structure of three ACE2 bound to one S trimer (PDB: 7kms) to illustrate the relative positioning of ACE2 and RBD in the experimental observation.

Extended Data Table 1 Populations of the different RBD conformations of S trimers from cryo-EM literature and from HS-AFM (this work)
Extended Data Table 2 Energy landscape parameters for the dissociation reaction between the ACE2 and RBD, either isolated or embedded within a S trimer

Supplementary information

Supplementary Information

Supplementary Methods 1–3, Texts 1–5, Figs. 1–12, Tables 1–6 and video information.

Supplementary Video 1

Supplementary Video 1.

Supplementary Video 2

Supplementary Video 2.

Supplementary Video 3

Supplementary Video 3.

Supplementary Video 4

Supplementary Video 4.

Supplementary Video 5

Supplementary Video 5.

Supplementary Video 6

Supplementary Video 6.

Supplementary Video 7

Supplementary Video 7.

Supplementary Video 8

Supplementary Video 8.

Supplementary Video 9

Supplementary Video 9.

Supplementary Video 10

Supplementary Video 10.

Supplementary Video 11

Supplementary Video 11.

Supplementary Video 12

Supplementary Video 12.

Supplementary Video 13

Supplementary Video 13.

Supplementary Video 14

Supplementary Video 14.

Supplementary Video 15

Supplementary Video 15.

Supplementary Video 16

Supplementary Video 16.

Supplementary Video 17

Supplementary Video 17.

Supplementary Video 18

Supplementary Video 18.

Supplementary Video 19

Supplementary Video 19.

Supplementary Video 20

Supplementary Video 20.

Supplementary Video 21

Supplementary Video 21.

Supplementary Video 22

Supplementary Video 22.

Supplementary Video 23

Supplementary Video 23.

Supplementary Video 24

Supplementary Video 24.

Supplementary Video 25

Supplementary Video 25.

Supplementary Source Data Fig. 5

Supplementary Source Data Fig. 5.

Supplementary Source Data Fig. 6

Supplementary Source Data Fig. 6.

Supplementary Source Data Fig. 7

Supplementary Source Data Fig. 7.

Supplementary Source Data Fig. 8

Supplementary Source Data Fig. 8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Fernandez, I., Sumbul, F. et al. Modulation of SARS-CoV-2 spike binding to ACE2 through conformational selection. Nat. Nanotechnol. 20, 926–934 (2025). https://doi.org/10.1038/s41565-025-01908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01908-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing