Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms

Abstract

Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Macrolones inhibit DNA gyrase and protein synthesis in vivo.
Fig. 2: Macrolones inhibit protein synthesis and DNA gyrase in vitro.
Fig. 3: Structures of MCX-66, MCX-91 and MCX-128 in complex with the wild-type T. thermophilus 70S ribosome.
Fig. 4: Identification of cellular targets of macrolones by selecting resistant mutants.
Fig. 5: Macrolones are poor inducers of the expression of inducible macrolide resistance genes.
Fig. 6: Structure of macrolone MCX-128 bound to the Erm-methylated 70S ribosome.

Similar content being viewed by others

Data availability

Coordinates and structure factors were deposited to the Research Collaboratory for Structural Bioinformatics (RCSB) PDB under the following accession codes: 8VTU for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-66, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTV for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-91, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTW for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-128 and protein Y; 8VTX for the m26A2058 T. thermophilus 70S ribosome in complex with macrolone MCX-128, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTY for the wild-type T. thermophilus 70S ribosome in complex with CIP and protein Y. All previously published structures that were used in this work for structural comparisons were retrieved from the RCSB PDB under accession codes 6XHW, 6XHX and 7ZTA. No sequence data were generated in this study. Source data are provided with this paper.

References

  1. Fernandes, P. Use of antibiotic core structures to generate new and useful macrolide antibiotics. In Antibiotics Current Innovations and Future Trends (eds Sánchez, S. & Demain, A. L.) (Caister Academic Press, 2015).

  2. Bush, N. G., Diez-Santos, I., Abbott, L. R. & Maxwell, A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules 25, 5662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pavlovic, D., Fajdetic, A. & Mutak, S. Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials. Bioorg. Med. Chem. 18, 8566–8582 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Fan, B. Z. et al. Design, synthesis and structure–activity relationships of novel 15-membered macrolides: quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. Eur. J. Med. Chem. 193, 112222 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Barry, A. L. & Jones, R. N. Comparative in vitro activity of amifloxacin and five other fluoroquinolone antimicrobial agents and preliminary criteria for the disk susceptibility test. Eur. J. Clin. Microbiol. 6, 179–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Yourassowsky, E., Van der Linden, M. P., Crokaert, F. & Glupczynski, Y. In vitro activity of pefloxacin compared to other antibiotics. J. Antimicrob. Chemother. 17, 19–28 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Dinos, G. P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 174, 2967–2983 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vazquez-Laslop, N. & Mankin, A. S. How macrolide antibiotics work. Trends Biochem. Sci. 43, 668–684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schlunzen, F. et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 17152–17157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl Acad. Sci. USA 107, 17158–17163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Svetlov, M. S. et al. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 17, 412–420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beckert, B. et al. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat. Commun. 12, 4466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Svetlov, M. S. et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA 25, 600–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, C. W. et al. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat. Commun. 14, 4196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jenni, S. & Ban, N. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol. 13, 212–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kannan, K., Vázquez-Laslop, N. & Mankin, A. S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, A. R., Gohara, D. W. & Yap, M. N. Sequence selectivity of macrolide-induced translational attenuation. Proc. Natl Acad. Sci. USA 111, 15379–15384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl Acad. Sci. USA 111, 15958–15963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sothiselvam, S. et al. Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep. 16, 1789–1799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Almutairi, M. M. et al. Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 9573–9582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Franceschi, F., Kanyo, Z., Sherer, E. C. & Sutcliffe, J. Macrolide resistance from the ribosome perspective. Curr. Drug Targets Infect. Disord. 4, 177–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477–480 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wand, G. & Taylor, D. E. Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob. Agents Chemother. 42, 1952–1958 (1998).

    Article  Google Scholar 

  30. Shallom, S. J. & Zelazny, A. M. Detection of mixed populations of clarithromycin-susceptible and -resistant Mycobacterium abscessus strains. J. Clin. Microbiol. 60, e0169421 (2022).

    Article  PubMed  Google Scholar 

  31. McGuire, J. M. et al. Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield) 2, 281–283 (1952).

    CAS  PubMed  Google Scholar 

  32. Kirst, H. A. Introduction to the macrolide antibiotics. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).

  33. Iacoviello, V. R. & Zinner, S. H. Macrolides: a clinical overview. In Macrolide Antibiotics (eds Parnham, M. J. & Bruinvels, J.) (Birkhäuser Verlag, 2002).

  34. Tanikawa, T. et al. Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives): a novel class of macrolide antibiotics. J. Med. Chem. 44, 4027–4030 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Liang, J. H. et al. Structure–activity relationships of novel alkylides: 3-O-arylalkyl clarithromycin derivatives with improved antibacterial activities. Eur. J. Med. Chem. 49, 289–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Magee, T. V. et al. Novel 3-O-carbamoyl erythromycin A derivatives (carbamolides) with activity against resistant staphylococcal and streptococcal isolates. Bioorg. Med. Chem. Lett. 23, 1727–1731 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Tang, D. et al. Design, synthesis, and antibacterial activities of novel 3,6-bicyclolide oximes: length optimization and zero carbon linker oximes. Bioorg. Med. Chem. Lett. 18, 5078–5082 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bryskier, A. & Denis, A. Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within Gram-positive cocci. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).

  39. Fernandes, P., Martens, E., Bertrand, D. & Pereira, D. The solithromycin journey—it is all in the chemistry. Bioorg. Med. Chem. 24, 6420–6428 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Capobianco, J. O. et al. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44, 1562–1567 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Llano-Sotelo, B. et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54, 4961–4970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Douthwaite, S. Structure–activity relationships of ketolides vs. macrolides. Clin. Microbiol. Infect. 7, 11–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Svetlov, M. S., Cohen, S., Alsuhebany, N., Vazquez-Laslop, N. & Mankin, A. S. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Proc. Natl Acad. Sci. USA 117, 1971–1975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, C. X. et al. Design, synthesis and structure–activity relationships of novel macrolones: hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur. J. Med. Chem. 169, 1–20 (2019).

    Article  PubMed  Google Scholar 

  45. Liu, X. P. et al. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides. Bioorg. Med. Chem. Lett. 68, 128761 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Hutinec, A. et al. Novel 8a-aza-8a-homoerythromycin–4′-(3-substituted-amino)propionates with broad spectrum antibacterial activity. Bioorg. Med. Chem. Lett. 20, 3244–3249 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Drlica, K., Malik, M., Kerns, R. J. & Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Miotto, P., Cirillo, D. M. & Migliori, G. B. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 147, 1135–1143 (2015).

    Article  PubMed  Google Scholar 

  50. Machalek, D. A. et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect. Dis. 20, 1302–1314 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Lungu, I. A., Moldovan, O. L., Biris, V. & Rusu, A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics 14, 1749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pavlovic, D. & Mutak, S. Discovery of 4′-ether linked azithromycin–quinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med. Chem. Lett. 2, 331–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cipcic Paljetak, H. et al. Macrolones are a novel class of macrolide antibiotics active against key resistant respiratory pathogens in vitro and in vivo. Antimicrob. Agents Chemother. 60, 5337–5348 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Weisblum, B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39, 797–805 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramu, H., Mankin, A. & Vazquez-Laslop, N. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71, 811–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Subramanian, S. L., Ramu, H. & Mankin, A. S. Inducible resistance to macrolide antibiotics. In Antibiotic Drug Discovery and Development (eds Dougherty, T. J. & Pucci, M. J.) (Springer Publishing Company, 2011).

  57. Vazquez-Laslop, N. et al. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling. Proc. Natl Acad. Sci. USA 108, 10496–10501 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liang, J. H. et al. Synthesis and antibacterial activities of 6-O-methylerythromycin A 9-O-(3-aryl-2-propenyl) oxime ketolide, 2,3-enol ether, and alkylide analogues. Eur. J. Med. Chem. 45, 3627–3635 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Osterman, I. A. et al. Sorting out antibiotics’ mechanisms of action: a double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 60, 7481–7489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morgan-Linnell, S. K., Becnel Boyd, L., Steffen, D. & Zechiedrich, L. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53, 235–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Hooper, D. C. & Jacoby, G. A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025320 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gellert, M., Mizuuchi, K., O’Dea, M. H. & Nash, H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl Acad. Sci. USA 73, 3872–3876 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paton, J. H. & Reeves, D. S. Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use. Drugs 36, 193–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Quan, S., Skovgaard, O., McLaughlin, R. E., Buurman, E. T. & Squires, C. L. Markerless Escherichia coli rrn deletion strains for genetic determination of ribosomal binding sites. G3 (Bethesda) 5, 2555–2557 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Triman, K. L., Peister, A. & Goel, R. A. Expanded versions of the 16S and 23S ribosomal RNA mutation databases (16SMDBexp and 23SMDBexp). Nucleic Acids Res. 26, 280–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malik, M. et al. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res. 44, 3304–3316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gupta, P., Sothiselvam, S., Vazquez-Laslop, N. & Mankin, A. S. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat. Commun. 4, 1984 (2013).

    Article  PubMed  Google Scholar 

  69. Vazquez-Laslop, N. & Mankin, A. S. Context-specific action of ribosomal antibiotics. Annu. Rev. Microbiol. 72, 185–207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Horinouchi, S. & Weisblum, B. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl Acad. Sci. USA 77, 7079–7083 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gryczan, T. J., Grandi, G., Hahn, J., Grandi, R. & Dubnau, D. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res. 8, 6081–6097 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sutcliffe, J. & Leclercq, R. Mechanisms of resistance to macrolides, lincosamides, and ketolides. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).

  73. Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Osterman, I. A. et al. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nat. Chem. Biol. 16, 1071–1077 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Leroy, E. C., Perry, T. N., Renault, T. T. & Innis, C. A. Tetracenomycin X sequesters peptidyl-tRNA during translation of QK motifs. Nat. Chem. Biol. 19, 1091–1096 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bundy, B. C. & Swartz, J. R. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein–protein click conjugation. Bioconjug. Chem. 21, 255–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Svetlov, M. S., Vazquez-Laslop, N. & Mankin, A. S. Kinetics of drug–ribosome interactions defines the cidality of macrolide antibiotics. Proc. Natl Acad. Sci. USA 114, 13673–13678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  81. Orelle, C. et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 41, e144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bailey, M., Chettiath, T. & Mankin, A. S. Induction of ermC expression by ‘non-inducing’ antibiotics. Antimicrob. Agents Chemother. 52, 866–874 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Polikanov, Y. S., Blaha, G. M. & Steitz, T. A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Syroegin, E. A., Aleksandrova, E. V. & Polikanov, Y. S. Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes. Nat. Chem. 15, 143–153 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Aleksandrova, E. V. et al. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01525-w (2024).

    Article  PubMed  Google Scholar 

  90. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  94. Schuttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Svetlov for valuable discussions and assistance with the data processing. We thank the Analysis and Testing Center at the Beijing Institute of Technology for collecting and analyzing the spectral data. We thank the staff at Northeastern Collaborative Access Team (NE-CAT) beamlines 24ID-C and 24ID-E for help with X-ray diffraction data collection, especially M. Capel, F. Murphy, S. Banerjee, I. Kourinov, D. Neau, J. Schuermann, N. Sukumar, A. Lynch, J. Withrow, K. Perry, A. Kaya and C. Salbego. This work is based upon research conducted at the NE-CAT beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (NIH; grant P30-GM124165 to NE-CAT). The Eiger 16M detector on the 24ID-E beamline is funded by an NIH-ORIP HEI grant (S10-OD021527 to NE-CAT). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. This work was supported by the National Institute of General Medical Sciences of the NIH (grant R35-GM127134 to A.S.M.), the National Institute of Allergy and Infectious Diseases of the NIH (grant R21-AI137584 to A.S.M. and Y.S.P.), the Illinois State startup funds (to Y.S.P.), the National Key Research and Development Program of China (grant 2018YFA0901800 to J.-H.L.) and the National Natural Science Foundation of China (grant 81673335 to J.-H.L.). The funders had no role in study design, data collection and analysis, decision to publish or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

C.-X.M. performed the chemical synthesis, purification and microbiological characterization of MCX compounds. D.K. and F.A. performed the in vivo dual-reporter assay, mutant selection and microbiological characterization of the selected MCX-resistant mutant strains. D.K. also performed the in vitro translation inhibition, gyrase inhibition and toeprinting assays. E.V.A. and Y.S.P. designed and performed X-ray crystallography experiments. A.S.M., N.V.-L., Y.S.P. and J.-H.L. designed and supervised the experiments. All authors interpreted the results. A.S.M., N.V.-L., Y.S.P. and J.-H.L. wrote the manuscript.

Corresponding authors

Correspondence to Jian-Hua Liang, Yury S. Polikanov or Alexander S. Mankin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Graeme Conn, Suparna Sanyal and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Inhibition of translation and ribosome binding of macrolones.

(a) Inhibition of production of the green flourescent protein (GFP) in cell-free translation system by varying concentrations of macrolones relative to uninhibited reaction. Shown are the results of two independent experiments. (b) Competitive binding of [14C]-ERY and macrolones to the E. coli ribosome. Unlabeled ERY was used as a control (black circles). Experimental details are presented in the Online Methods section. Shown are the results of two independent experiments.

Extended Data Fig. 2 Effects of macrolones on in vitro translation.

Mapping the sites of macrolone-mediated ribosome arrests (blue arrows) at the early codons of the model ORF derived from the E. coli yrbA gene. The classic macrolide ERY is included for comparison. Due to the presence of the Thr-RS inhibitor borrelidin, the ribosomes that did not stall at the early codons are eventually trapped at the Gln12 codon when Thr13 needs to be incorporated into the growing protein (grey arrow). The AUG start codon is marked with a black arrow. The sample labeled as ‘NONE’ contained only borrelidin but no ERY or macrolones. Amino acid and nucleotide sequences of yrbA gene are shown on the left. Sequencing lanes are marked as C, U, A, G. This experiment was repeated independently twice and produced similar results.

Extended Data Fig. 3 Electron density maps of ribosome-bound MCX-66, MCX-91, and MCX-128.

(a-c) 2Fo-Fc Fourier electron density maps of MCX-66 (a, magenta), MCX-91 (b, green), and MCX-128 (c, yellow) in complex with the T. thermophilus 70S ribosome (blue mesh) shown in two mutually perpendicular views. The refined models of ribosome-bound MCX compounds are displayed in their respective electron density maps after the refinement contoured at 1.0σ. Carbon atoms are colored magenta (MCX-66), green (MCX-91), or yellow (MCX-128); nitrogen atoms are blue; oxygen atoms are red; fluorine atoms are dark green. Note that the locations of fluoroquinolone side chains can be unambiguously determined from the obtained electron density maps.

Extended Data Fig. 4 Comparison of the structures of ribosome-bound macrolones, macrolide erythromycin and tetracenomycin X.

(a, b) Superposition of the structure of ribosome-bound MCX-66 (magenta), MCX-91 (green), MCX-128 (yellow) with the previous structures of ERY (red, PDB entry 6XHX ref. 15), or TcmX (blue, PDB entry 7ZTA ref. 75). All structures were aligned based on domain V of the 23S rRNA.

Extended Data Fig. 5 Structure of ciprofloxacin (CIP) in complex with the 70S ribosome.

(a) 2Fo-Fc Fourier electron density map of ciprofloxacin (CIP, greencyan) in complex with the T. thermophilus 70S ribosome (blue mesh). The refined model of ribosome-bound CIP is displayed in its respective electron density map after the refinement contoured at 1.0σ. Carbon atoms are colored greencyan; nitrogen atoms are blue; oxygen atoms are red; fluorine atom is dark green. (b, c) Close-up views of CIP bound in the NPET of the 70S ribosome, highlighting its stacking (red arrows) interactions with the nucleotides of the 23S rRNA. (d) Superposition of the structures of ribosome-bound CIP and MCX-128 (yellow). The structures were aligned based on domain V of the 23S rRNA.

Extended Data Fig. 6 Macrolones inhibit DNA gyrase activity in vitro.

(a) Chemical structures of the macrolones used in the assay. (b) Effect of macrolones on the activity of DNA gyrase. Supercoiled or relaxed plasmid DNA bands are marked on the left. CIP and ERY were used as positive and negative controls, respectively. The sample labeled as ‘NONE’ contained no antibiotics. A control sample where gyrase was not added is marked as ‘-’.The experiment was repeated independently and produced similar results.

Extended Data Fig. 7 Electron density maps of A2058 nucleotide in Erm-modified and wild-type T. thermophilus 70S ribosome.

(a, c) Unbiased Fo-Fc (grey and green mesh) and (b, d) 2Fo-Fc (blue mesh) electron difference Fourier maps of nucleotide A2058 in the T. thermophilus 70S ribosome contoured at 3.0σ and 1.0σ, respectively. Grey mesh shows the Fo-Fc map after refinement with the entire modified nucleotide omitted. Green mesh, reflecting the presence of the two methyl groups at N6 position of the nucleobase, shows the Fo-Fc electron density map after refinement with the nucleotide A2058 built as a regular unmethylated adenine. The refined models of Erm-modified N6-dimethylated (a, b) or wild-type unmodified (c, d) nucleotide A2058 are displayed in the corresponding electron density maps. Both structures carry MCX-128 compound (not shown). Carbon atoms are colored dark blue for the Erm-modified A2058 and light blue for the unmodified A2058; nitrogens are dark blue; oxygens are red.

Extended Data Table 1 Minimal inhibitory concentrations (MICs) of macrolones against the parental E. coli strain SQ110DTC (WT) and selected resistant mutants
Extended Data Table 2 Antibacterial activity of macrolones and reference antibiotics against macrolide-sensitive ATCC standard strains and macrolide-resistant clinical isolates

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Note, Figs. 1–6 and References.

Reporting Summary

Source data

Source Data Fig. 2

Raw experimental data for Fig. 2a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, E.V., Ma, CX., Klepacki, D. et al. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 20, 1680–1690 (2024). https://doi.org/10.1038/s41589-024-01685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01685-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research