Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Engineered human blood–brain barrier microfluidic model for vascular permeability analyses

Abstract

The blood–brain barrier (BBB) greatly restricts the entry of biological and engineered therapeutic molecules into the brain. Due to challenges in translating results from animal models to the clinic, relevant in vitro human BBB models are needed to assess pathophysiological molecular transport mechanisms and enable the design of targeted therapies for neurological disorders. This protocol describes an in vitro model of the human BBB self-assembled within microfluidic devices from stem-cell-derived or primary brain endothelial cells, and primary brain pericytes and astrocytes. This protocol requires 1.5 d for device fabrication, 7 d for device culture and up to 5 d for downstream imaging, protein and gene expression analyses. Methodologies to measure the permeability of any molecule in the BBB model, which take 30 min per device, are also included. Compared with standard 2D assays, the BBB model features relevant cellular organization and morphological characteristics, as well as values of molecular permeability within the range expected in vivo. These properties, coupled with a functional brain endothelial expression profile and the capability to easily test several repeats with low reagent consumption, make this BBB model highly suitable for widespread use in academic and industrial laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of protocol steps for the formation of BBB MVNs in the micro- and macrodevices, along with downstream applications following 7 d of culture in the devices.
Fig. 2: Summary of protocol steps for the measurement of permeability in the BBB MVNs by confocal microscopy of fluorophore-labeled molecules.
Fig. 3: Summary of protocol steps for the measurement of permeability in the BBB MVNs by collection and analysis of interstitial fluid after intravascular pressurization.
Fig. 4: Summary of protocol steps for the fabrication of the microdevice with an SU-8 wafer and the macrodevice with a 3D printed mold (Steps 1–2 in the protocol).
Fig. 5: Summary of protocol steps for the addition of EC monolayers in the side medium reservoirs on day 4 of culture (Steps 15–19 in the protocol).
Fig. 6: Schematic visualization of molecular perfusion through the BBB MVNs (Steps 21–22 in the protocol).
Fig. 7: Fabrication of flow stoppers and pressure line to prepare the BBB MVN device for pressurization (Steps 38–43 in the protocol).
Fig. 8: Access and collection of the BBB MVN gel within PDMS microfluidic devices (Steps 62–64 in the protocol).
Fig. 9: Immunofluorescence staining for various proteins of interest in the BBB MVNs with iPS-ECs (Steps 52–59 in the protocol).
Fig. 10: Immunofluorescence staining for various proteins of interest in the BBB MVNs with iPS-ECs (Steps 52–59 in the protocol).
Fig. 11: Scanning electron microscopy images of histological sections collected from BBB MVNs fixed in 2% PFA, 2% glutaraldehyde in 0.15 M cacodylate buffer and sectioned using the methodology described in Fang et al.70.
Fig. 12: EC culture conditions and isolation for gene analysis.
Fig. 13: Assessing transport across the BBB MVNs.
Fig. 14: Functional permeability assay.
Fig. 15: Evaluating secreted cytokines in the BBB MVNs.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All raw data needed to generate the figures presented in this work are available in the source data files. Raw image files are available from the corresponding author upon request.

References

  1. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Andreone, B. J. et al. Blood–brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hajal, C., LeRoi, B., Kamm, R. D. & Maoz, B. M. Biology and models of the blood–brain barrier. Annu. Rev. Biomed. Eng. 23, 359–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Hammarlund-Udenaes, M., Fridén, M., Syvänen, S. & Gupta, A. On the rate and extent of drug delivery to the brain. Pharm. Res. 25, 1737–1750 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Hajal, C., Campisi, M., Mattu, C., Chiono, V. & Kamm, R. D. In vitro models of molecular and nano-particle transport across the blood–brain barrier. Biomicrofluidics 12, 42213 (2018).

    Article  Google Scholar 

  6. Sip, C. G., Bhattacharjee, N. & Folch, A. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab. Chip 14, 302–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Stone, N. L., England, T. J. & O’Sullivan, S. E. A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci. 13, (2019).

  8. Ahn, S. I. et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 11, 175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLOS ONE 11, e0150360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab. Chip 17, 448–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, J. A. et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, (2015).

  12. Campisi, M. et al. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Offeddu, G. S. et al. An on-chip model of protein paracellular and transcellular permeability in the microcirculation. Biomaterials 212, 115–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Offeddu, G. S. et al. Application of transmural flow across in vitro microvasculature enables direct sampling of interstitial therapeutic molecule distribution. Small 15, 1902393 (2019).

    Article  CAS  Google Scholar 

  15. Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Olmer, R. et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Rep. 10, 1657–1672 (2018).

    Article  CAS  Google Scholar 

  18. Yuan, W., Lv, Y., Zeng, M. & Fu, B. M. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc. Res. 77, 166–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Shi, L., Zeng, M., Sun, Y. & Fu, B. M. Quantification of blood–brain barrier solute permeability and brain transport by multiphoton microscopy. J. Biomech. Eng. 136, 31005 (2014).

    Article  Google Scholar 

  20. Kutuzov, N., Flyvbjerg, H. & Lauritzen, M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc. Natl Acad. Sci. USA 115, E9429–E9429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Offeddu, G. S., Shin, Y. & Kamm, R. D. Microphysiological models of neurological disorders for drug development. Curr. Opin. Biomed. Eng. 13, 119–126 (2020).

    Article  Google Scholar 

  22. Vatine, G. D. et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, S. W. L. et al. Modeling nanocarrier transport across a 3D in vitro human blood-brain–barrier microvasculature. Adv. Healthc. Mater. 9, 1901486 (2020).

    Article  CAS  Google Scholar 

  24. Straehla, J. P., Hajal, C., Dacoba, T., Kamm, R. D. & Hammond, P. T. THER-15. Functionalized nanoparticle trafficking assessed in a novel microfluidic model of the blood–brain barrier with high grade glioma spheroids. Neuro-Oncol. 21, ii117–ii117 (2019).

    Article  PubMed Central  Google Scholar 

  25. Straehla, J. P. et al. DDEL-04. Engineered nanocarriers to enhance drug delivery across the blood–brain barrier. Neuro-Oncol. 22, iii284 (2020).

    Article  PubMed Central  Google Scholar 

  26. Chen, M. B., Whisler, J. A., Jeon, J. S. & Kamm, R. D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. Quant. Biosci. Nano Macro 5, 1262–1271 (2013).

    CAS  Google Scholar 

  27. Hajal, C. et al. The CCL2-CCR2 astrocyte-cancer cell axis in tumor extravasation at the brain. Sci. Adv. 7, 26 (2021).

    Article  Google Scholar 

  28. Haase, K., Offeddu, G. S., Gillrie, M. R. & Kamm, R. D. Endothelial regulation of drug transport in a 3D vascularized tumor model. Adv. Funct. Mater. 30, 2002444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cucullo, L., Hossain, M., Puvenna, V., Marchi, N. & Janigro, D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 12, 40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gs, O. et al. Microheart: a microfluidic pump for functional vascular culture in microphysiological systems. J. Biomech. 119, (2021).

  31. Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Bowman, P. D., Ennis, S. R., Rarey, K. E., Betz, A. L. & Goldstein, G. W. Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann. Neurol. 14, 396–402 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Rauh, J., Meyer, J., Beuckmann, C. & Galla, H. J. Development of an in vitro cell culture system to mimic the blood–brain barrier. Prog. Brain Res 91, 117–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Shafaie, S., Hutter, V., Brown, M. B., Cook, M. T. & Chau, D. Y. S. Influence of surface geometry on the culture of human cell lines: a comparative study using flat, round-bottom and v-shaped 96 well plates. PLOS ONE 12, e0186799 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dehouck, M. P., Méresse, S., Delorme, P., Fruchart, J. C. & Cecchelli, R. An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J. Neurochem. 54, 1798–1801 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, H. et al. A dynamic in vivo-like organotypic blood–brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, srep36670 (2016).

    Article  Google Scholar 

  37. Li, X., Xu, J., Bartolák-Suki, E., Jiang, J. & Tien, J. Evaluation of 1-mm-diameter endothelialized dense collagen tubes in vascular microsurgery. J. Biomed. Mater. Res. B Appl. Biomater. 108, 2441–2449 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Linville, R. M., Boland, N. F., Covarrubias, G., Price, G. M. & Tien, J. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell. Mol. Bioeng. 9, 73–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Park, T.-E. et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bischoff, I. et al. Pitfalls in assessing microvascular endothelial barrier function: impedance-based devices versus the classic macromolecular tracer assay. Sci. Rep. 6, 23671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bang, S. et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci. Rep. 7, 8083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Offeddu, G. S. et al. The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. Commun. Biol. 4, 1–10 (2021).

    Article  Google Scholar 

  44. Hajal, C., Ibrahim, L., Serrano, J. C., Offeddu, G. S. & Kamm, R. D. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Biomaterials 265, 120470 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. McPherson, C. et al. Cost analysis and rate setting manual for animal research facilities. Lab Anim. 30, 15–16 (2001).

    Google Scholar 

  46. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, M. B. et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc. Natl Acad. Sci. USA 115, 7022–7027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105, 549–561.e5 (2020).

    Article  PubMed  Google Scholar 

  49. Ll, B. et al. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood–brain barrier tissue. J. Biomed. Mater. Res. A 104, (2016).

  50. Di Marco, A. et al. Application of an in vitro blood–brain barrier model in the selection of experimental drug candidates for the treatment of Huntington’s disease. Mol. Pharm. 16, 2069–2082 (2019).

    Article  PubMed  Google Scholar 

  51. Kedem, O. & Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).

    Article  CAS  PubMed  Google Scholar 

  52. Hedegaard, S. F. et al. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci. Rep. 8, 6327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shah, D. K. & Betts, A. M. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs 5, 297–305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dore-Duffy, P. & Cleary, K. Morphology and properties of pericytes. Methods Mol. Biol. 686, 49–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Barar, J., Rafi, M. A., Pourseif, M. M. & Omidi, Y. Blood–brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts 6, 225–248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  57. Product datasheet: iCell Endothelial Cells https://www.fujifilmcdi.com/wp/wp-content/uploads/2020/07/CDI_iCell_EndothelialCells_DS.pdf (2018).

  58. Shin, Y. et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7, 1247–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, S., Chung, M., Lee, S.-R. & Jeon, N. L. 3D brain angiogenesis model to reconstitute functional human blood–brain barrier in vitro. Biotechnol. Bioeng. 117, 748–762 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Bonkowski, D., Katyshev, V., Balabanov, R. D., Borisov, A. & Dore-Duffy, P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 8, 8 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Iwamoto, F. M. & Fine, H. A. Bevacizumab for malignant gliomas. Arch. Neurol. 67, 285–288 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, Y., Ali, S., Clarke, J. & Cha, S. Bevacizumab in recurrent glioma: patterns of treatment failure and implications. Brain Tumor Res. Treat. 5, 1–9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim, M. M., Umemura, Y. & Leung, D. Bevacizumab and glioblastoma: past, present, and future directions. Cancer J. Sudbury Mass 24, 180–186 (2018).

    Article  CAS  Google Scholar 

  64. Jang, S. H., Wientjes, M. G. & Au, J. L. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J. Pharmacol. Exp. Ther. 298, 1236–1242 (2001).

    CAS  PubMed  Google Scholar 

  65. Pan, W. et al. Cytokine signaling modulates blood–brain barrier function. Curr. Pharm. Des. 17, 3729–3740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poller, B. et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J. Neurochem 107, 1358–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, A. et al. The blood–brain barrier: an engineering perspective. Front. Neuroeng. 6, (2013).

  68. Frank, R. N., Dutta, S. & Mancini, M. A. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest. Ophthalmol. Vis. Sci. 28, 1086–1091 (1987).

    CAS  PubMed  Google Scholar 

  69. Haase, K., Gillrie, M. R., Hajal, C. & Kamm, R. D. Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF-Ang-Tie2 signaling. Adv. Sci. 6, 1900878 (2019).

    Article  CAS  Google Scholar 

  70. Fang, T. et al. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat. Methods 15, 1029–1032 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Golden, P. L. & Pardridge, W. M. P-glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res 819, 143–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Bendayan, R., Ronaldson, P. T., Gingras, D. & Bendayan, M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem. 54, 1159–1167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hajal, C. Blood–Brain Barrier Model on a Microfluidic Chip for the Study of Tumor Cell Extravasation. Thesis, Massachusetts Institute of Technology, 2018.

Download references

Acknowledgements

The authors thank L. Possenti for help with writing the ImageJ Macro, J. Whisler and K. Haase for initial design of the macrodevice, and L. Vega for help with the 3D printing mold for the macrodevice. C.H. is supported by the Ludwig Center for Molecular Oncology Graduate Fellowship and by the National Cancer Institute (U01 CA202177). G.S.O. is supported by Amgen Inc. Y.J. and R.K. acknowledge support from the Cure Alzheimer’s Fund and the National Institute of Neurological Disorders and Stroke (R21NS105027).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and C.H. developed and optimized the BBB MVN protocol; G.S.O. developed the transport measurement protocols; C.H., G.S.O., Y.S., D.H., C.G.K. and R.D.K. designed the experiments; C.H., G.S.O., Y.S., S.Z. and O.M. performed the experiments; C.H. and G.S.O. analyzed the data; C.H., G.S.O. and Y.S. designed the figure schematics; C.H. and G.S.O. wrote the first draft of the manuscript, and all authors contributed to its final form.

Corresponding author

Correspondence to Roger D. Kamm.

Ethics declarations

Competing interests

R.D.K. is a cofounder of AIM Biotech, which markets microfluidic systems for 3D culture.

Additional information

Peer review information Nature Protocols thanks Luca Cucullo and Loes Segerink for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Campisi, M. et al. Biomaterials 180, 117–129 (2018): https://doi.org/10.1016/j.biomaterials.2018.07.014

Offeddu, G. S. et al. Biomaterials 212, 115–125 (2019): https://doi.org/10.1016/j.biomaterials.2019.05.022

Offeddu, G. S. et al. Small 15, 1902393 (2019): https://doi.org/10.1002/smll.201902393

Chen, M. B. et al. Nat. Protoc. 12, 865–880 (2017): https://doi.org/10.1038/nprot.2017.018

Shin, Y. et al. Nat. Protoc. 7, 1247–59 (2012): https://doi.org/10.1038/nprot.2012.051

Extended data

Extended Data Fig. 1 Morphological properties of the BBB MVNs over time starting at day 2 of culture after device seeding.

Parameters considered are (a) average vessel branch length (µm), (b) average vessel diameter (µm), and (c) number of branches per ROI12,69,73.

Source data

Extended Data Fig. 2 Steps for vascular permeability measurements via confocal microscopy.

(a) Representative images of perfused plasma IgG (green) at times 0 and 12 min, and increasing matrix intensity over time; the single data points represent the same single pixels in the matrix imaged over time. Scale bar, 100 μm. (b) Permeability of plasma IgG in the BBB MVNs over time. At short times (<12 min), variability in the measurement derives from low signal-to-noise ratio. At long times (>20 min), higher permeability values derive from progressive perfusate diffusion from the side channels. (c) Comparison in 40 kDa dextran permeability measured in the micro and macro devices; n = 3 device repeats, each the average of 3 regions of interest (ROIs). The higher permeability in the micro device derives from increased perfusate diffusion from the side channels over the same time.

Source data

Extended Data Fig. 3 Steps for vascular permeability measurements via fluid sampling.

(a) Example vascular and matrix intensities measured for IgG as a function of depth imaged within the device. Both intensities are normalized to the vascular intensity near the bottom glass. They decrease with depth as a result of light scattering, falling within the background intensity range (shaded area) in the case of the matrix intensity. (b) Example microscope z-drift measured during a typical experiment. (c) Permeability of plasma IgG as a function of imaged region of interest (ROI) size. Average and standard deviation between 3 devices are reported. For ROIs smaller than 600 µm by side, the varying permeability values are an artifact due to incomplete capture of the BBB MVN average morphology.

Source data

Extended Data Fig. 4 Effective permeability of FITC (assumed σ = 0) across the BBB MVNs as a function of intravascular pressure applied.

The slope of the linear fit represents the hydraulic conductivity Lp14.

Source data

Extended Data Fig. 5 Immunofluorescence staining for various proteins of interest in the BBB MVNs with iPS-ECs (steps 52-59 in the protocol).

(a) Staining of water channel protein (aquaporin 4) in ACs in the BBB MVNs. (b) Staining of glycocalyx protein (hyaluronic acid) in the BBB MVNs. (c) Staining of tight junction protein (claudin-5) in the BBB MVNs. Scale bars are 100 µm for (a-b) and 50 µm for (c).

Extended Data Fig. 6 Immunofluorescence staining for various proteins of interest in the BBB MVNs with HBMECs (steps 52-59 in the protocol).

(a) Staining of PC marker (PDGFR-β) in the MVNs, along with F-actin to visualize interactions between HBMECs and PCs. (b) Staining of AC marker (GFAP) in the MVNs, along with F-actin to visualize interactions between HBMECs and ACs. (c) Staining of tight junction protein (ZO-1) in the BBB MVNs with HBMECs. (d) Staining of basement membrane proteins (collagen IV and laminin) in the BBB MVNs with HBMECs. Scale bars are 100 µm for (a, d) and 50 µm for (b-c).

Extended Data Fig. 7 Gene levels measured via qRT-PCR in the different conditions described in Fig. 12a for tight junctions.

(a) Claudin 1, (b) claudin 3, (c) claudin 5, (d) occludin, and (e) ZO-1.

Extended Data Fig. 8 Gene levels measured via qRT-PCR in the different conditions described in Fig. 12a for adherens junctions.

(a) VE-cadherin, (b) JAM-A, and EC adhesion markers (c) PDGF-B and (d) VCAM1.

Extended Data Fig. 9 Gene levels measured via qRT-PCR in the different conditions described in Fig. 12a for transporter receptors.

(a) LRP1, (b) LAT1, (c) CAT1, (d) GLUT1, (e) TfR, (f) BCRP, (g) MOT1, (h) CERP, (i) MRP1, (j) MRP2, (k) RAGE, (l) MFSD2A, and (m) P-GP.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Supplementary Table 1 and Supplementary Method.

Reporting Summary

Supplementary Data 1

CAD file 1 for macro device

Supplementary Data 2

CAD file 2 for micro device

Supplementary Data 3

Raw data to graph and obtain statistical measures for Fig. 12 and Extended Data Figs. 7–9.

Supplementary Software 1

Macro code for permeability measurements using ImageJ

Supplementary Software 2

Classifier model for permeability measurements using ImageJ

Supplementary Table 2

Spreadsheet with template for permeability measurements using ImageJ

Source data

Source Data Fig. 11

Raw data to graph and obtain statistical measures.

Source Data Fig. 13

Raw data to graph and obtain statistical measures.

Source Data Fig. 14

Raw data to graph and obtain statistical measures.

Source Data Fig. 15

Raw data to graph and obtain statistical measures.

Source Data Extended Data Fig. 1

Raw data to graph and obtain statistical measures.

Source Data Extended Data Fig. 2

Raw data to graph and obtain statistical measures.

Source Data Extended Data Fig. 3

Raw data to graph and obtain statistical measures.

Source Data Extended Data Fig. 4

Raw data to graph and obtain statistical measures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajal, C., Offeddu, G.S., Shin, Y. et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat Protoc 17, 95–128 (2022). https://doi.org/10.1038/s41596-021-00635-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-021-00635-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research