Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Death Discovery
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. cell death discovery
  3. articles
  4. article
Tetrandrine-driven autophagy suppresses SARS-CoV-2 replication by modulating cholesterol and IGF signaling pathways
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 January 2026

Tetrandrine-driven autophagy suppresses SARS-CoV-2 replication by modulating cholesterol and IGF signaling pathways

  • Lais de O. Marchioro1,2 na1,
  • Sofia De Stefanis3 na1,
  • Beatriz G. Araújo1,
  • Davide Mariotti4,
  • Ingrid K. M. Watanabe5,
  • Michael Stumpe  ORCID: orcid.org/0000-0002-9443-93266,
  • Giulia Matusali4,
  • Fabrizio Maggi2,4,
  • Soraya S. Smaili  ORCID: orcid.org/0000-0001-5844-13681,
  • Jörn Dengjel  ORCID: orcid.org/0000-0002-9453-46146,
  • Gustavo J. S. Pereira1,7 na2 &
  • …
  • Manuela Antonioli  ORCID: orcid.org/0000-0002-7568-47132,8 na2 

Cell Death Discovery , Article number:  (2026) Cite this article

  • 1048 Accesses

  • 20 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Antiviral agents
  • Autophagy
  • Target identification

Abstract

SARS-CoV-2 exploits multiple host cellular processes, including autophagy, a critical intracellular degradation pathway, to facilitate viral replication and evade immune detection. Tetrandrine, a natural bis-benzylisoquinoline alkaloid derived from Stephania tetrandra, has been reported to modulate autophagy and exhibits potential antiviral properties. In this study, we investigated the effects of Tetrandrine on SARS-CoV-2 infection in human lung epithelial cells (Calu-3), with a particular focus on autophagy-related mechanisms. Our results demonstrate that Tetrandrine modulates autophagic activity in a dose-dependent manner and significantly reduces SARS-CoV-2 replication, particularly when administered prior to infection. Notably, its antiviral effect is retained in autophagy-deficient cells, indicating the involvement of autophagy-independent mechanisms. Proteomic analysis of Calu-3 cells infected with the Omicron BA.5 variant revealed that Tetrandrine regulates several host pathways implicated in viral replication, including autophagy, cholesterol metabolism, and insulin-like growth factor signaling. These findings suggest that Tetrandrine exerts multifaceted antiviral effects by targeting both autophagy-dependent and -independent cellular pathways. Collectively, our data supports the potential of Tetrandrine as a therapeutic candidate against COVID-19 and warns further evaluation in preclinical and clinical models. Data are available via ProteomeXchange with identifier PXD064448.

Similar content being viewed by others

SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals

Article Open access 21 June 2021

Potential antiviral effects of pantethine against SARS-CoV-2

Article Open access 08 February 2023

A portrait of the infected cell: how SARS-CoV-2 infection reshapes cellular processes and pathways

Article Open access 17 December 2024

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine. 2020;382:1199–207.

    Google Scholar 

  2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020;382:727–33.

    Google Scholar 

  3. Mohapatra RK, Kandi V, Sarangi AK, Verma S, Tuli HS, Chakraborty S, et al. The recently emerged BA.4 and BA.5 lineages of Omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic – Correspondence. International Journal of Surgery. 2022;103:106698.

    Google Scholar 

  4. Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science (1979). 2020;369:650–5.

    Google Scholar 

  5. Cuervo AM. Autophagy’s top chef. Science (1979). 2011;332:1392–3.

    Google Scholar 

  6. Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 2021;56:427–.e5.

    Google Scholar 

  7. Li F, Li J, Wang PH, Yang N, Huang J, Ou J, et al. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166260.

    Google Scholar 

  8. Bills C, Xie X, Shi PY. The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Res. 2023;213:105590.

    Google Scholar 

  9. Hou P, Wang X, Wang H, Wang T, Yu Z, Xu C, et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy. 2023;19:551–69.

    Google Scholar 

  10. Zhang Y, Sun H, Pei R, Mao B, Zhao Z, Li H, et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 2021;7:31.

    Google Scholar 

  11. Su J, Shen S, Hu Y, Chen S, Cheng L, Cai Y, et al. SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function. J Med Virol 2023; 95. https://doi.org/10.1002/jmv.28175.

  12. Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun. 2019;10:2–4.

    Google Scholar 

  13. Limthongkul J, Akkarasereenon K, Yodweerapong T, Songthammawat P, Tong-Ngam P, Tubsuwan A, et al. Novel Potent Autophagy Inhibitor Ka-003 Inhibits Dengue Virus Replication. Viruses. 2023;15:2012.

    Google Scholar 

  14. Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun. 2021;12:3818.

    Google Scholar 

  15. Williams CG, Jureka AS, Silvas JA, Nicolini AM, Chvatal SA, Carlson-Stevermer J, et al. Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Rep 2021; 36. https://doi.org/10.1016/j.celrep.2021.109479.

  16. Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. Journal of Pharmacy and Pharmacology. 2020;72:1491–512.

    Google Scholar 

  17. Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N, et al. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science (1979). 2015;347:995–8.

    Google Scholar 

  18. Hu S, Dutt J, Zhao T, Foster CS. Tetrandrine potently inhibits herpes simplex virus type-1-induced keratitis in BALB/c mice. Ocul Immunol Inflamm. 1997;5:173–80.

    Google Scholar 

  19. Qian B, Hu Y, Liu C, Zheng D, Han X, Gong M, et al. Tetrandrine (TET) inhibits African swine fever virus entry into cells by blocking the PI3K/Akt pathway. Virus Res 2024; 339. https://doi.org/10.1016/j.virusres.2023.199258.

  20. Kolita B, Borah D, Hazarika P, Phukan E, Borah RR. Plant-derived Antiviral Compounds as Potential COVID-19 Drug Candidates: In-silico Investigation in Search of SARS-CoV-2 Inhibitors. Trends in Sciences. 2023;20:5529.

    Google Scholar 

  21. Liu J, Wang F, Wang X, Fan S, Li Y, Xu M, et al. Antiviral effects and tissue exposure of tetrandrine against SARS-CoV-2 infection and COVID-19. MedComm (Beijing). 2023;4:1–16.

    Google Scholar 

  22. Liu Y, Zhong W, Zhang J, Chen W, lu Y, Qiao Y, et al. Tetrandrine Modulates Rheb-mTOR Signaling-Mediated Selective Autophagy and Protects Pulmonary Fibrosis. Front Pharmacol 2021; 12. https://doi.org/10.3389/fphar.2021.739220.

  23. Liu J, Yu P, Dai F, Jiang H, Ma Z. Tetrandrine reduces oxidative stress, apoptosis, and extracellular matrix degradation and improves intervertebral disc degeneration by inducing autophagy. Bioengineered. 2022;13:3944–57.

    Google Scholar 

  24. Li J, Shi M, Liu L, Wang J, Zhu M, Chen H Tetrandrine Inhibits Skeletal Muscle Differentiation by Blocking Autophagic Flux. Int J Mol Sci. 2022;23:8148.

  25. Chen S, Liu Y, Ge J, Yin J, Shi T, Ntambara J, et al. Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19. Medicina (B Aires). 2022;58:1194.

    Google Scholar 

  26. Ivanova T, Mariienko Y, Mehterov N, Kazakova M, Sbirkov Y, Todorova K, et al. Autophagy and SARS-CoV-2-Old Players in New Games. Int J Mol Sci. 2023;24:1–23.

    Google Scholar 

  27. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.

    Google Scholar 

  28. Gawaz A, Schindler M, Hagelauer E, Blanchard G, Riel S, Vollert A, et al. SARS-CoV-2eInduced Vasculitic Skin Lesions Are Associated with Massive Spike Protein Depositions in Autophagosomes. Journal of Investigative Dermatology 2024; : 369-77.

  29. Simioni C, Sanz JM, Gafà R, Tagliatti V, Greco P, Passaro A, et al. Effects of SARS-COV-2 on molecules involved in vascularization and autophagy in placenta tissues. J Mol Histol. 2024;55:753–64.

    Google Scholar 

  30. Sun H, Yang Q, Zhang Y, Cui S, Zhou Z, Zhang P, et al. Syntaxin-6 restricts SARS-CoV-2 infection by facilitating virus trafficking to autophagosomes. J Virol 2025; 99. https://doi.org/10.1128/JVI.00002-25.

  31. Hui X, Zhang L, Cao L, Huang K, Zhao Y, Zhang Y, et al. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther. 2021;6:1–3.

    Google Scholar 

  32. Gong K, Chen C, Zhan Y, Chen Y, Huang Z, Li W. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. Journal of Biological Chemistry 2012; 287:35576–88.

  33. Parzych KR, Klionsky DJ. An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxid Redox Signal. 2014;20:460–73.

    Google Scholar 

  34. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - A double-edged sword. Nat Rev Microbiol. 2018;16:341–54.

    Google Scholar 

  35. Lyu L, Hu Y, Yin S, Wang L, Ye F, Wang M, et al. Autophagy inhibition enhances anti-pituitary adenoma effect of tetrandrine. Phytother Res. 2021;35:4007–21.

    Google Scholar 

  36. Heister PM, Poston RN. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol Res Perspect. 2020;8:e00653.

    Google Scholar 

  37. Bhagya N, Chandrashekar KR. Tetrandrine – A molecule of wide bioactivity. Phytochemistry. 2016;125:5–13.

    Google Scholar 

  38. Gong K, Chen C, Zhan Y, Chen Y, Huang Z, Li W. Autophagy-related Gene 7 (ATG7) and Reactive Oxygen Species/Extracellular Signal-regulated Kinase Regulate Tetrandrine-induced Autophagy in Human Hepatocellular Carcinoma. Journal of Biological Chemistry. 2012;287:35576–88.

    Google Scholar 

  39. Gerndt S, Chen CC, Chao YK, Yuan Y, Burgstaller S, Rosato AS, et al. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. Elife 2020; 9. https://doi.org/10.7554/ELIFE.54712.

  40. Goretzko J, Heitzig N, Thomas K, Krogsaeter EK, Naß J, Linard Matos AL, et al. Leukocyte adhesion is governed by endolysosomal two pore channel 2 (TPC2). 2021. https://doi.org/10.1101/2021.09.28.462104.

  41. Kettunen P, Lesnikova A, Räsänen N, Ojha R, Palmunen L, Laakso M, et al. SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. J Virol. 2023;97:1–16.

    Google Scholar 

  42. Qu P, Evans JP, Kurhade C, Zeng C, Zheng Y-M, Xu K, et al. Determinants and Mechanisms of the Low Fusogenicity and High Dependence on Endosomal Entry of Omicron Subvariants. mBio 2023; 14. https://doi.org/10.1128/mbio.03176-22.

  43. Zhou H, Hu Z, Castro-Gonzalez S. Bidirectional interplay between SARS-CoV-2 and autophagy. mBio. 2023;14:e0102023.

    Google Scholar 

  44. Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses. 2024;16:1491.

    Google Scholar 

  45. Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, et al. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism 2022; 133. https://doi.org/10.1016/J.METABOL.2022.155236.

  46. Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS-CoV-2 viral replication and the host immune response. J Lipid Res. 2021;62:100129.

    Google Scholar 

  47. Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, et al. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13. https://doi.org/10.3389/FIMMU.2022.791267.

  48. Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res. 2009;143:162–76.

    Google Scholar 

  49. Campbell SM, Crowe SM, Mak J. Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS. 2002;16:2253–61.

    Google Scholar 

  50. Bandivdekar A, Vernekar V, Velhal S. Evaluation of cystatin C activities against HIV. Indian J Med Res. 2015;141:423.

    Google Scholar 

  51. Luthra K. Antiviral activity of cystatin C against HIV. Indian J Med Res. 2015;141:383.

    Google Scholar 

  52. Wang S, Li W, Hui H, Tiwari SK, Zhang Q, Croker BA, et al. Cholesterol 25‐Hydroxylase inhibits SARS‐CoV‐2 and other coronaviruses by depleting membrane cholesterol. EMBO J 2020;39. https://doi.org/10.15252/EMBJ.2020106057.

  53. Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, et al. Sars-cov-2 requires cholesterol for viral entry and pathological syncytia formation. Elife 2021; 10. https://doi.org/10.7554/ELIFE.65962.

  54. Barrantes FJ. The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Prog Lipid Res. 2022;87:101166.

    Google Scholar 

  55. Chan WC, Zhao Q, Wong KH, Tang HH, Mok DKW, Pardeshi L, et al. Tetrandrine regulates NAADP-mediated calcium signaling through a LIMP-2-dependent and sphingosine-mediated mechanism. Nature Communications. 2025;16:1–21.

    Google Scholar 

  56. Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, et al. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Comput Struct Biotechnol J. 2021;19:1933–43.

    Google Scholar 

  57. Bakillah A, Hejji FAl, Almasaud A, Jami HAl, Hawwari A, Qarni AAl, et al. Lipid Raft Integrity and Cellular Cholesterol Homeostasis Are Critical for SARS-CoV-2 Entry into Cells. Nutrients. 2022;14:3417.

  58. Luthra K. Antiviral activity of cystatin C against HIV. Indian Journal of Medical Research. 2015;141:383.

    Google Scholar 

  59. Bandivdekar A, Vernekar V, Velhal S. Evaluation of cystatin C activities against HIV. Indian Journal of Medical Research. 2015;141:423.

    Google Scholar 

  60. Li Y, Duche A, Sayer MR, Roosan D, Khalafalla FG, Ostrom RS, et al. SARS-CoV-2 early infection signature identified potential key infection mechanisms and drug targets. BMC Genomics 2021; 22. https://doi.org/10.1186/S12864-021-07433-4.

  61. Sun W. Insulin may promote SARS-CoV-2 cell entry and replication in diabetes patients. Med Hypotheses. 2022;170:110997.

    Google Scholar 

  62. Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne) 2021; 12. https://doi.org/10.3389/fendo.2021.731974.

  63. Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, et al. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep. 2024;43:114689.

    Google Scholar 

  64. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

    Google Scholar 

  65. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.

    Google Scholar 

Download references

Acknowledgements

Dr. Daniele Lapa for the BSL3 laboratory formation of L.O.M. at IRCCS INMI L. Spallanzani. Mohammadreza Bayat and Nesilda Qaja for sustaining M.A. in leading the IRCCS INMI L. Spallanzani laboratory activity and Confocal Images analysis, respectively. Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, at Unicamp, specially to Dr. Jose Luiz Proença-Modena and the group of researchers, supporting the discussion of results and BSL3 laboratory formation of L.O.M. in Brazil.

Funding

This study received support from Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP: 2019/14722-4; 2022/15748-0 (G.J.S.P.); 2019/02821-8 (S.S.S.). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES and CAPES/PrInt) - Finance Code 001 for scholarship to L.O.M. The study has also been funded by the University and the Canton of Fribourg as part of the SKINTEGRITY.CH research network to J.D., by the Biology Department of Tor Vergata University of Rome (project acronym, AutoCuRC) to M.A., supported by the Italian Ministry of Health with Ricerca Corrente Linea 1 to IRCCS INMI L. Spallanzani (F.M.), and Ricerca Finalizzata (GR-2019-12369231) to M.A.

Author information

Author notes
  1. These authors contributed equally: Lais de O. Marchioro, Sofia De Stefanis.

  2. These authors jointly supervised this work: Gustavo J. S. Pereira, Manuela Antonioli.

Authors and Affiliations

  1. Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil

    Lais de O. Marchioro, Beatriz G. Araújo, Soraya S. Smaili & Gustavo J. S. Pereira

  2. Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases “Lazzaro Spallanzani”- IRCCS 00149, Rome, Italy

    Lais de O. Marchioro, Fabrizio Maggi & Manuela Antonioli

  3. PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133, Rome, Italy

    Sofia De Stefanis

  4. Laboratory of Virology and Laboratories of Biosafety, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149, Rome, Italy

    Davide Mariotti, Giulia Matusali & Fabrizio Maggi

  5. Nephrology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil

    Ingrid K. M. Watanabe

  6. Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland

    Michael Stumpe & Jörn Dengjel

  7. Department of Cell and Developmental Biology, University College London, London, UK

    Gustavo J. S. Pereira

  8. Department of Biology, University of Rome “Tor Vergata”, 00133, Rome, Italy

    Manuela Antonioli

Authors
  1. Lais de O. Marchioro
    View author publications

    Search author on:PubMed Google Scholar

  2. Sofia De Stefanis
    View author publications

    Search author on:PubMed Google Scholar

  3. Beatriz G. Araújo
    View author publications

    Search author on:PubMed Google Scholar

  4. Davide Mariotti
    View author publications

    Search author on:PubMed Google Scholar

  5. Ingrid K. M. Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  6. Michael Stumpe
    View author publications

    Search author on:PubMed Google Scholar

  7. Giulia Matusali
    View author publications

    Search author on:PubMed Google Scholar

  8. Fabrizio Maggi
    View author publications

    Search author on:PubMed Google Scholar

  9. Soraya S. Smaili
    View author publications

    Search author on:PubMed Google Scholar

  10. Jörn Dengjel
    View author publications

    Search author on:PubMed Google Scholar

  11. Gustavo J. S. Pereira
    View author publications

    Search author on:PubMed Google Scholar

  12. Manuela Antonioli
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.O.M., S.D.S. G.M., S.S.S., G.M.F., G.J.S.P., M.A. conceptualization; L.O.M., S.D.S., B.G.A, I.K.M.W., D.M., M.S., G.M., G.J.S.P, M.A. methodology; L.O.M., S.D.S., D.M., G.M., M.A. data curation; G.J.S.P., S.S.S., L.O.M., F.M., J.D., M.A. funding acquisition; G.M., G.J.S.P., M.A. supervision and validation; L.O.M., I.K.M.W., S.S.S., F.M., J.D., G.J.S.P., M.A. writing – review & editing; L.O.M.; G.J.S.P.; M.A. writing – original draft. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Gustavo J. S. Pereira or Manuela Antonioli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

Ethics approval was not needed, as this study does not involve patients or animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table

Supplementary Fig. 1

Supplementary Fig. 3

Supplementary Fig. 4

Supplementary Fig. 5

Original Western blot files

Supp. Info

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchioro, L.d.O., De Stefanis, S., Araújo, B.G. et al. Tetrandrine-driven autophagy suppresses SARS-CoV-2 replication by modulating cholesterol and IGF signaling pathways. Cell Death Discov. (2026). https://doi.org/10.1038/s41420-025-02926-7

Download citation

  • Received: 23 June 2025

  • Revised: 04 December 2025

  • Accepted: 12 December 2025

  • Published: 06 January 2026

  • DOI: https://doi.org/10.1038/s41420-025-02926-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Contact
  • About the Partner
  • Upcoming Conferences
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Cell Death Discovery (Cell Death Discov.)

ISSN 2058-7716 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited