Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Functional implications of polygenic risk for schizophrenia in human neurons
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Functional implications of polygenic risk for schizophrenia in human neurons

  • PJ Michael Deans1 na1,
  • Kayla G. Retallick-Townsley2,3,4 na1,
  • Aiqun Li  ORCID: orcid.org/0000-0003-1485-53522,3,
  • Carina Seah  ORCID: orcid.org/0000-0003-1604-18382,3,4,
  • Jessica Johnson2,
  • Judit Garcia Gonzalez  ORCID: orcid.org/0000-0001-6245-740X2,
  • Evan Cao2,
  • Nadine Schrode2,3,
  • Alex Yu2,3,
  • Sam Cartwright2,3,
  • Georgios Voloudakis  ORCID: orcid.org/0000-0002-5729-632X2,3,4,5,
  • Wen Zhang2,3,4,
  • Minghui Wang  ORCID: orcid.org/0000-0001-9171-49622,3,
  • John F. Fullard  ORCID: orcid.org/0000-0001-9874-29072,3,4,5,
  • Kiran Girdhar  ORCID: orcid.org/0000-0002-5622-042X2,3,4,5,
  • Eli Stahl  ORCID: orcid.org/0000-0002-1192-05612,3,
  • Schahram Akbarian  ORCID: orcid.org/0000-0001-7700-08912,3,4,
  • Bin Zhang2,3,
  • Panos Roussos  ORCID: orcid.org/0000-0002-4640-62392,3,4,5,6,7,
  • Paul O’Reilly  ORCID: orcid.org/0000-0001-7515-08452,4,
  • Laura M. Huckins  ORCID: orcid.org/0000-0002-5369-65021,2,3,8 &
  • …
  • Kristen J. Brennand  ORCID: orcid.org/0000-0003-0993-59561,2,3,4,9,10 

Nature Communications , Article number:  (2026) Cite this article

  • 2820 Accesses

  • 1 Citations

  • 19 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genetics research
  • Molecular neuroscience
  • Personalized medicine

Abstract

Genome wide association studies of schizophrenia reveal a complex polygenic risk architecture comprised of hundreds of risk variants; most are common in the population, non-coding, and act by genetically regulating the expression of one or more gene targets (“eGenes”). It remains unclear how the myriad genetic variants that are predicted to confer individually small effects combine to yield substantial clinical impacts in aggregate. Here, we demonstrate that convergence (i.e., the shared downstream transcriptomic changes with a common direction of effect), resulting from one-at-a-time perturbation of schizophrenia eGenes, influences the outcome when eGenes are manipulated in combination. In total, we apply pooled and arrayed CRISPR approaches to target 21 schizophrenia eGenes in human induced pluripotent stem cell-derived glutamatergic neurons, finding that functionally similar eGenes yield stronger and more specific convergent effects. Points of convergence constrain additive relationships between polygenic risk loci: consistent with a liability threshold model, combinatorial perturbations of these same schizophrenia eGenes reveal that pathway-level convergence predicts when observed effects will fail to sum to levels predicted by an additive model. Targeting points of convergence as novel therapeutic targets may prove more efficacious than individually reversing the effects of multiple risk loci.

Similar content being viewed by others

3D genetic architecture of schizophrenia risk across three neuronal subtypes

Article Open access 28 November 2025

Convergence of the dysregulated regulome in schizophrenia with polygenic risk and evolutionarily constrained enhancers

Article 25 December 2023

What genes are differentially expressed in individuals with schizophrenia? A systematic review

Article Open access 28 January 2022

Data availability

All source donor hiPSCs have already been deposited at the Rutgers University Cell and DNA Repository (study 160; http://www.nimhstemcells.org/). All vectors are available at https://www.addgene.org/Kristen_Brennand/. Bulk and single-cell RNA sequencing data are available at the Gene Expression Omnibus under accession code GSE200774. Processed data can be accessed through Synapse under Synapse accession code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524]. For the pooled and arrayed CRISPR analyses, all raw FASTQ Count files and corresponding processed data are available on the Gene Expression Omnibus under GEO accession code GSE200774). Average expression count matrices and metadata following quality control and normalization of ECCITE-seq data, as well as results of differential gene expression analysis and Target Network Reconstruction of Bayesian Bi-clustering are available on Synapse accession code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524. All corresponding code was uploaded to Synapse under accession code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524]). DEGs, GSEA tables, synergy sub-categories, and synergy sub-category over-representation analysis for arrayed screen RNA-seq data; individual scRNA-seq perturbation DEGs and pathway enrichments from pooled experiments; reconstructed convergent networks and convergent network enrichment results (FUMA, ClusterProfiler, ORA of common/rare/variants) from arrayed and pooled screens; and CMAP drug prioritization queries and GSEA for 10 targets and each individual perturbation signature used in CMAP query are available in Supplementary Data Files 1–4.

Code availability

Code used for the convergence and additivity analyses presented in this manuscript can be accessed through Synapse under Synapse accession code syn27819129 [https://www.synapse.org/Synapse:syn27819129/wiki/623524].

References

  1. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Google Scholar 

  2. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Google Scholar 

  3. Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).

    Google Scholar 

  4. Hauberg, M. E. et al. Large-scale identification of common trait and disease variants affecting gene expression. Am. J. Hum. Genet. 101, 157 (2017).

    Google Scholar 

  5. Hauberg, M. E. et al. Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol. Psychiatry 24, 1685–1695 (2018).

  6. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    Google Scholar 

  7. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117–1125 (2018).

    Google Scholar 

  8. Zeng, B. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161–169 (2022).

    Google Scholar 

  9. Sieberts, S. K. et al. Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Sci. Data 7, 340 (2020).

    Google Scholar 

  10. Forrest, M. P. et al. Open chromatin profiling in hipsc-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21, 305–318.e8 (2017).

  11. Zhang, S. et al. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science 369, 561–565 (2020).

    Google Scholar 

  12. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv. 9, eadg3754 (2023).

    Google Scholar 

  13. Huo, Y., Li, S., Liu, J., Li, X. & Luo, X. J. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat. Commun. 10, 670 (2019).

    Google Scholar 

  14. Alver, M., Lykoskoufis, N., Ramisch, A., Dermitzakis, E. T. & Ongen, H. Leveraging interindividual variability of regulatory activity for refining genetic regulation of gene expression in schizophrenia. Mol. Psychiatry 27, 5177–5185 (2022).

    Google Scholar 

  15. Casella, A. M., Colantuoni, C. & Ament, S. A. Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies. PLoS Comput. Biol. 18, e1010430 (2022).

    Google Scholar 

  16. Dong, P., Voloudakis, G., Fullard, J. F., Hoffman, G. E. & Roussos, P. Convergence of the dysregulated regulome in schizophrenia with polygenic risk and evolutionarily constrained enhancers. Mol. Psychiatry 29, 782–792 (2024).

  17. Rajarajan, P. et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science 362, eaat4311 (2018).

  18. Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 1252–1262 (2019).

    Google Scholar 

  19. Espeso-Gil, S. et al. A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons. Genome Med. 12, 19 (2020).

    Google Scholar 

  20. Hu, B. et al. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nat. Commun. 12, 3968 (2021).

    Google Scholar 

  21. Girdhar, K. et al. Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nat. Neurosci. 25, 474–483 (2022).

    Google Scholar 

  22. Girdhar, K. et al. The neuronal chromatin landscape in adult schizophrenia brains is linked to early fetal development. medRxiv (2023).

  23. Guo, M. G. et al. Integrative analyses highlight functional regulatory variants associated with neuropsychiatric diseases. Nat. Genet. 55, 1876–1891 (2023).

    Google Scholar 

  24. Rummel, C. K. et al. Massively parallel functional dissection of schizophrenia-associated noncoding genetic variants. Cell 186, 5165–5182 e5133 (2023).

    Google Scholar 

  25. McAfee, J. C. et al. Systematic investigation of allelic regulatory activity of schizophrenia-associated common variants. Cell Genom. 3, 100404 (2023).

    Google Scholar 

  26. Yang, X. et al. Functional characterization of gene regulatory elements and neuropsychiatric disease-associated risk loci in iPSCs and iPSC-derived neurons. bioRxiv, 2023.2008.2030.555359 (2023).

  27. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 51, 1475–1485 (2019).

    Google Scholar 

  28. Zhang, S. et al. Multiple genes in a single GWAS risk locus synergistically mediate aberrant synaptic development and function in human neurons. Cell Genom. 3, 100399 (2023).

    Google Scholar 

  29. Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154, 518–529 (2013).

    Google Scholar 

  30. Schork, A. J. et al. A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nat. Neurosci. 22, 353–361 (2019).

    Google Scholar 

  31. Liu, D. et al. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Mol. Psychiatry 27, 4218–4233 (2022).

    Google Scholar 

  32. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Google Scholar 

  33. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

    Google Scholar 

  34. Radulescu, E. et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol. Psychiatry 25, 791–804 (2018).

  35. Li, J. et al. Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat. Neurosci. 20, 1150–1161 (2017).

    Google Scholar 

  36. Jia, P., Chen, X., Fanous, A. H. & Zhao, Z. Convergent roles of de novo mutations and common variants in schizophrenia in tissue-specific and spatiotemporal co-expression network. Transl. psychiatry 8, 105 (2018).

    Google Scholar 

  37. Hsu, Y. H. et al. Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia. iScience 26, 106701 (2023).

    Google Scholar 

  38. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 e1716 (2018).

    Google Scholar 

  39. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

  40. Hall, L. S. et al. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Hum. Mol. Genet. 29, 159–167 (2020).

    Google Scholar 

  41. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).

    Google Scholar 

  42. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

  43. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    Google Scholar 

  44. Ruzicka, W. B. et al. Single-cell multi-cohort dissection of the schizophrenia transcriptome. medRxiv, 2022.2008.2031.22279406 (2022).

  45. Cederquist, G. Y. et al. A multiplex human pluripotent stem cell platform defines molecular and functional subclasses of autism-related genes. Cell Stem Cell 27, 35–49 e36 (2020).

    Google Scholar 

  46. Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063 (2020).

  47. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022).

    Google Scholar 

  48. Lalli, M. A., Avey, D., Dougherty, J. D., Milbrandt, J. & Mitra, R. D. High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Res. 30, 1317–1331 (2020).

    Google Scholar 

  49. Willsey, H. R. et al. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 109, 1409 (2021).

    Google Scholar 

  50. Weinschutz Mendes, H. et al. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep. 42, 112243 (2023).

    Google Scholar 

  51. Meng, X. et al. Assembloid CRISPR screens reveal impact of disease genes in human neurodevelopment. Nature 622, 359–366 (2023).

    Google Scholar 

  52. Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).

    Google Scholar 

  53. Wang, B. et al. A foundational atlas of autism protein interactions reveals molecular convergence. bioRxiv, 2023.2012.2003.569805 (2023).

  54. Pintacuda, G. et al. Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. Cell Genomics 3, 100250 (2023).

  55. Murtaza, N. et al. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep. 41, 111678 (2022).

    Google Scholar 

  56. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54, 263–273 (2022).

    Google Scholar 

  57. Nag, A., McCarthy, M. I. & Mahajan, A. Large-scale analyses provide no evidence for gene-gene interactions influencing type 2 diabetes risk. Diabetes 69, 2518–2522 (2020). https://doi.org/10.2337/db20-0224

  58. Wang, M. et al. Transformative network modeling of multi-omics data reveals detailed circuits, key regulators, and potential therapeutics for Alzheimer’s disease. Neuron 109, 257–272 e214 (2021).

    Google Scholar 

  59. Flaherty, E. et al. Neuronal impact of patient-specific aberrant NRXN1alpha splicing. Nat. Genet. 51, 1679–1690 (2019).

    Google Scholar 

  60. Ho, S. M. et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 101, 113–124 (2016).

    Google Scholar 

  61. Pak, C. et al. Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proc. Natl. Acad. Sci. USA 118, e2025598118 (2021).

  62. Marro, S. G. et al. Neuroligin-4 regulates excitatory synaptic transmission in human neurons. Neuron 103, 617–626 e616 (2019).

    Google Scholar 

  63. Zhang, Z. et al. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Sci. Transl. Med. 10, eaar4338 (2018).

  64. Yi, F. et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 352, aaf2669 (2016).

    Google Scholar 

  65. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Google Scholar 

  66. Meijer, M. et al. A single-cell model for synaptic transmission and plasticity in human iPSC-derived neurons. Cell Rep. 27, 2199–2211 e2196 (2019).

    Google Scholar 

  67. Sun, Y. et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. Elife 5, e13073 (2016).

  68. Zhang, W. et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat. Commun. 10, 3834 (2019).

    Google Scholar 

  69. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, 2314 (2018).=

  70. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Google Scholar 

  71. Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018).

    Google Scholar 

  72. Huckins, L. M. et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat. Genet. 51, 659–674 (2019).

    Google Scholar 

  73. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Google Scholar 

  74. Dobbyn, A. et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. Am. J. Hum. Genet. 102, 1169–1184 (2018).

    Google Scholar 

  75. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Google Scholar 

  76. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).

    Google Scholar 

  77. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Google Scholar 

  78. Batiuk, M. Y. et al. Upper cortical layer-driven network impairment in schizophrenia. Sci. Adv. 8, eabn8367 (2022).

    Google Scholar 

  79. Teixeira, J. R., Szeto, R. A., Carvalho, V. M. A., Muotri, A. R. & Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. psychiatry 11, 19 (2021).

    Google Scholar 

  80. Yu, G. Gene ontology semantic similarity analysis using GOSemSim. Methods Mol. Biol. 2117, 207–215 (2020).

    Google Scholar 

  81. Saha, A. et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res. 27, 1843–1858 (2017).

    Google Scholar 

  82. Namkung, H. et al. The miR-124-AMPAR pathway connects polygenic risks with behavioral changes shared between schizophrenia and bipolar disorder. Neuron 111, 220–235 e229 (2023).

    Google Scholar 

  83. Malt, E. A., Juhasz, K., Malt, U. F. & Naumann, T. A role for the transcription factor Nk2 homeobox 1 in schizophrenia: convergent evidence from animal and human studies. Front Behav. Neurosci. 10, 59 (2016).

    Google Scholar 

  84. Schrode, N., Seah, C., Deans, P. J. M., Hoffman, G. & Brennand, K. J. Analysis framework and experimental design for evaluating synergy-driving gene expression. Nat. Protoc. 16, 812–840 (2021).

    Google Scholar 

  85. Corsello, S. M. et al. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med 23, 405–408 (2017).

    Google Scholar 

  86. Kurita, M. et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat. Neurosci. 15, 1245–1254 (2012).

    Google Scholar 

  87. Lichtstein, D. et al. Na(+), K(+)-ATPase signaling and bipolar disorder. Int. J. Mol. Sci. 19, 2314 (2018).

  88. Rees, E. et al. Targeted sequencing of 10,198 samples confirms abnormalities in neuronal activity and implicates voltage-gated sodium channels in schizophrenia pathogenesis. Biol. Psychiatry 85, 554–562 (2019).

    Google Scholar 

  89. Kim, E., Huh, J. R. & Choi, G. B. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat. Immunol. 25, 598–606 (2024).

  90. Hardingham, G. E. & Do, K. Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 17, 125–134 (2016).

    Google Scholar 

  91. Cannon, M., Jones, P. B. & Murray, R. M. Obstetric complications and schizophrenia: historical and meta-analytic review. Am. J. Psychiatry 159, 1080–1092 (2002).

    Google Scholar 

  92. Estes, M. L. & McAllister, A. K. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Google Scholar 

  93. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet, 51, 592–599 (2019).

    Google Scholar 

  94. Weiner, D. J. et al. Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p. Nat. Genet. 54, 1630–1639 (2022).

    Google Scholar 

  95. Domingo, J. et al. Non-linear transcriptional responses to gradual modulation of transcription factor dosage. bioRxiv, 2024.2003.2001.582837 (2024).

  96. Bryois, J. et al. Cell-type specific cis-eQTLs in eight brain cell-types identifies novel risk genes for human brain disorders. medRxiv, 2021.2010.2009.21264604 (2021).

  97. Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771 e722 (2019).

    Google Scholar 

  98. Seah, C. et al. Modeling gene x environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nat. Neurosci. 25, 1434–1445 (2022).

    Google Scholar 

  99. Dobrindt, K. et al. Publicly available hiPSC lines with extreme polygenic risk scores for modeling schizophrenia. Complex Psychiatry 6, 68–82 (2021).

    Google Scholar 

  100. Carre, C. et al. Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction. Genome Biol. 25, 76 (2024).

    Google Scholar 

  101. Baselmans, B. M. L., Yengo, L., van Rheenen, W. & Wray, N. R. Risk in relatives, heritability, snp-based heritability, and genetic correlations in psychiatric disorders: a review. Biol. Psychiatry 89, 11–19 (2021).

    Google Scholar 

  102. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nat. Rev. Genet. 3, 11–21 (2002).

    Google Scholar 

  103. Choi, S. W. et al. PRSet: Pathway-based polygenic risk score analyses and software. PLoS Genet. 19, e1010624 (2023).

    Google Scholar 

  104. Xu, J. et al. Polygenicity at the pathway level for anorexia nervosa. medRxiv, 2025.2010.2008.25337623 (2025).

  105. Choi, S. W. et al. The power of pathway-based polygenic risk scores. Res. Sq. PPR362752 (2021).

  106. Li, Z. et al. Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy. Psychiatry Res. 314, 114658 (2022).

    Google Scholar 

  107. Childers, E., Bowen, E. F. W., Rhodes, C. H. & Granger, R. Immune-related genomic schizophrenic subtyping identified in DLPFC transcriptome. Genes (Basel) 13, 1200 (2022).

  108. Luo, C. et al. Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol. Psychiatry 26, 6926–6936 (2021).

    Google Scholar 

  109. Zubiaur, P. et al. Variants in COMT, CYP3A5, CYP2B6, and ABCG2 alter quetiapine pharmacokinetics. Pharmaceutics 13, 1573 (2021).

  110. Visscher, P. M., Gyngell, C., Yengo, L. & Savulescu, J. Heritable polygenic editing: the next frontier in genomic medicine?. Nature 637, 637–645 (2025).

    Google Scholar 

  111. Shen, H. et al. Adjunctive therapy with statins in schizophrenia patients: a meta-analysis and implications. Psychiatry Res 262, 84–93 (2018).

    Google Scholar 

  112. Sommer, I. E. et al. Simvastatin augmentation for patients with early-phase schizophrenia-spectrum disorders: a double-blind, randomized placebo-controlled trial. Schizophr. Bull. 47, 1108–1115 (2021).

    Google Scholar 

  113. Weiser, M. et al. A randomized controlled trial of add-on naproxen, simvastatin and their combination for the treatment of schizophrenia or schizoaffective disorder. Eur. Neuropsychopharmacol. 73, 65–74 (2023).

    Google Scholar 

  114. Aichholzer, M. et al. Inflammatory monocyte gene signature predicts beneficial within group effect of simvastatin in patients with schizophrenia spectrum disorders in a secondary analysis of a randomized controlled trial. Brain Behav. Immun. Health 26, 100551 (2022).

    Google Scholar 

  115. Zaki, J. K. et al. Exploring peripheral biomarkers of response to simvastatin supplementation in schizophrenia. Schizophr. Res. 266, 66–74 (2024).

    Google Scholar 

  116. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Google Scholar 

  117. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Google Scholar 

  118. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    Google Scholar 

  119. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 e523 (2020).

    Google Scholar 

  120. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Google Scholar 

  121. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Google Scholar 

  122. Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).

    Google Scholar 

  123. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Google Scholar 

  124. Cross-Disorder Group of the Psychiatric Genomics Consortium Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 e1411 (2019).

    Google Scholar 

  125. Litman, A. et al. Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs. Nat. Genet. 57, 1611–1619 (2025).

    Google Scholar 

  126. McMahon, F. J. & Insel, T. R. Pharmacogenomics and personalized medicine in neuropsychiatry. Neuron 74, 773–776 (2012).

    Google Scholar 

  127. Cao, C. et al. Power analysis of transcriptome-wide association study: Implications for practical protocol choice. PLoS Genet. 17, e1009405 (2021).

    Google Scholar 

  128. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Google Scholar 

  129. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Google Scholar 

  130. Ho, S. M. et al. Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes. Stem Cell Rep. 9, 615–628 (2017).

    Google Scholar 

  131. Powell, S. K. et al. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol. Psychiatry 28, 1970–1982 (2023).

    Google Scholar 

  132. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nat. Commun. 8, 2225 (2017).

    Google Scholar 

  133. Ahn, K. et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol. Psychiatry 19, 568–572 (2014).

    Google Scholar 

  134. Ahn, K., An, S. S., Shugart, Y. Y. & Rapoport, J. L. Common polygenic variation and risk for childhood-onset schizophrenia. Mol. Psychiatry 21, 94–6 (2014).

  135. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single-cell genomics. Genome Biol. 19, 224 (2018).

    Google Scholar 

  136. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 e1817 (2016).

    Google Scholar 

  137. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 e1821 (2016).

    Google Scholar 

  138. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Google Scholar 

  139. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Google Scholar 

  140. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Google Scholar 

  141. Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

    Google Scholar 

  142. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Google Scholar 

  143. Tian, R. et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived neurons. Neuron https://doi.org/10.1016/j.neuron.2019.07.014 (2019).

    Google Scholar 

  144. Garcia M. F. et al. Dynamic convergence of neurodevelopmental disorder risk genes across neurodevelopment. Nat. Neuro. https://doi.org/10.1101/2024.08.23.609190 (2025).

  145. Gao, C., McDowell, I. C., Zhao, S., Brown, C. D. & Engelhardt, B. E. Context specific and differential gene co-expression networks via Bayesian biclustering. PLoS Comput. Biol. 12, e1004791 (2016).

    Google Scholar 

  146. Gao C., Brown, C.D., Engelhardt, B.E. A latent factor model with a mixture of sparse and dense factors to model gene expression data with confounding effects. arXiv https://arxiv.org/abs/1310.4792 (2013).

  147. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Google Scholar 

  148. Wang, J. & Liao, Y. WebGestaltR: gene set analysis toolkit WebGestaltR. R package version 0.4.3., https://CRAN.R-project.org/package=WebGestaltR (2020).

  149. Stelzer, G. et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 54, 1 30 31–31 30 33 (2016).

    Google Scholar 

  150. Rappaport, N. et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 45, D877–D887 (2017).

    Google Scholar 

  151. Cerezo, M. et al. The NHGRI-EBI GWAS catalog: standards for reusability, sustainability and diversity. Nucleic Acids Res. 53, D998–D1005 (2025).

    Google Scholar 

  152. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    Google Scholar 

  153. Liang, Q. et al. Impact of common variants on brain gene expression from RNA to protein to schizophrenia risk. Nat. Commun. 16, 10773 (2025).

    Google Scholar 

  154. Niego, A. & Benitez-Burraco, A. Autism and Williams syndrome: dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. Autism 25, 464–489 (2021).

    Google Scholar 

  155. Hribkova, H. et al. Clozapine reverses dysfunction of glutamatergic neurons derived from clozapine-responsive schizophrenia patients. Front. Cell. Neurosci. 16, 830757 (2022).

    Google Scholar 

  156. Kim, S. K. et al. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Rep. 19, 1336–1350 (2024).

    Google Scholar 

  157. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Google Scholar 

  158. Subramanian, A. et al. A Next Generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 e1417 (2017).

    Google Scholar 

  159. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  160. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Google Scholar 

  161. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Google Scholar 

  162. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

  163. Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).

    Google Scholar 

  164. Subramanian, A., Tamayo, P. & Mootha, V. K. & others. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15545–15550 (2005).

    Google Scholar 

  165. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Google Scholar 

  166. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

    Google Scholar 

  167. Du, J. et al. KEGG-PATH: kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol. Biosyst. 10, 2441–2447 (2014).

    Google Scholar 

  168. Gene Ontology Consortium The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Google Scholar 

  169. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Google Scholar 

Download references

Acknowledgements

Special thanks to Michael Talkowski and Douglas Ruderfer for countless discussions on convergence, and to Naomi Wray for thoughtful insights and contextualizations of our analyses on non-additive effects.

Author information

Author notes
  1. These authors contributed equally: PJ Michael Deans, Kayla G. Retallick-Townsley.

Authors and Affiliations

  1. Departments of Psychiatry, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA

    PJ Michael Deans, Laura M. Huckins & Kristen J. Brennand

  2. Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Kayla G. Retallick-Townsley, Aiqun Li, Carina Seah, Jessica Johnson, Judit Garcia Gonzalez, Evan Cao, Nadine Schrode, Alex Yu, Sam Cartwright, Georgios Voloudakis, Wen Zhang, Minghui Wang, John F. Fullard, Kiran Girdhar, Eli Stahl, Schahram Akbarian, Bin Zhang, Panos Roussos, Paul O’Reilly, Laura M. Huckins & Kristen J. Brennand

  3. Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Kayla G. Retallick-Townsley, Aiqun Li, Carina Seah, Nadine Schrode, Alex Yu, Sam Cartwright, Georgios Voloudakis, Wen Zhang, Minghui Wang, John F. Fullard, Kiran Girdhar, Eli Stahl, Schahram Akbarian, Bin Zhang, Panos Roussos, Laura M. Huckins & Kristen J. Brennand

  4. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Kayla G. Retallick-Townsley, Carina Seah, Georgios Voloudakis, Wen Zhang, John F. Fullard, Kiran Girdhar, Schahram Akbarian, Panos Roussos, Paul O’Reilly & Kristen J. Brennand

  5. Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Georgios Voloudakis, John F. Fullard, Kiran Girdhar & Panos Roussos

  6. Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA

    Panos Roussos

  7. Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA

    Panos Roussos

  8. Seaver Autism Centre for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Laura M. Huckins

  9. Department of Genetics, Yale University School of Medicine, New Haven, CT, USA

    Kristen J. Brennand

  10. Wu Tsai Institute, Yale University, New Haven, CT, USA

    Kristen J. Brennand

Authors
  1. PJ Michael Deans
    View author publications

    Search author on:PubMed Google Scholar

  2. Kayla G. Retallick-Townsley
    View author publications

    Search author on:PubMed Google Scholar

  3. Aiqun Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Carina Seah
    View author publications

    Search author on:PubMed Google Scholar

  5. Jessica Johnson
    View author publications

    Search author on:PubMed Google Scholar

  6. Judit Garcia Gonzalez
    View author publications

    Search author on:PubMed Google Scholar

  7. Evan Cao
    View author publications

    Search author on:PubMed Google Scholar

  8. Nadine Schrode
    View author publications

    Search author on:PubMed Google Scholar

  9. Alex Yu
    View author publications

    Search author on:PubMed Google Scholar

  10. Sam Cartwright
    View author publications

    Search author on:PubMed Google Scholar

  11. Georgios Voloudakis
    View author publications

    Search author on:PubMed Google Scholar

  12. Wen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  13. Minghui Wang
    View author publications

    Search author on:PubMed Google Scholar

  14. John F. Fullard
    View author publications

    Search author on:PubMed Google Scholar

  15. Kiran Girdhar
    View author publications

    Search author on:PubMed Google Scholar

  16. Eli Stahl
    View author publications

    Search author on:PubMed Google Scholar

  17. Schahram Akbarian
    View author publications

    Search author on:PubMed Google Scholar

  18. Bin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  19. Panos Roussos
    View author publications

    Search author on:PubMed Google Scholar

  20. Paul O’Reilly
    View author publications

    Search author on:PubMed Google Scholar

  21. Laura M. Huckins
    View author publications

    Search author on:PubMed Google Scholar

  22. Kristen J. Brennand
    View author publications

    Search author on:PubMed Google Scholar

Contributions

SCZ eGene lists were prioritized by E.S., L.M.H., W.Z., G.V. and P.R., together with K.J.B. Epigenome data provided by K.G., S.A. and P.R. iGLUT transcriptomic and phenotypic studies were conducted by P.J.M.D., with assistance by E.C. Synergy analysis was conceptualized by N.S. and applied by P.J.M.D.; convergent analyses were conceptualized by K.G.R-T. and applied by C.S. Transcriptomic imputation was conducted by J.J. and L.M.H.; pathway-specific PRS by J.G.G. and P.O. The ECCITE-seq pipeline was adapted to hiPSC-neurons by A.L., supported by P.J.M.D., J.F.F., A.Y., S.C and B.Z. ECCITE-seq iGLUT neuron studies were conducted by A.L. and P.J.M.D. 10x analyses were conducted by J.F.F., and preliminary ECCITE-seq quality control was conducted by M.W. Convergent analyses were conceptualized by K.J.B. and L.H., developed and conducted entirely by K.G.R-T. The paper was written by P.J.M.D., K.G.R-T., L.H., and K.J.B., with input from all authors. The following pairs of authors contributed equally to this manuscript: P.J.M.D. and K.G.R-T; C.S. and A.L.; J.J. and J.G.G. This work was supported by F31MH130122 (K.G.R-T.), R01MH109897 (K.J.B., P.R.), R56MH101454 (K.J.B., E.S., L.M.H.), R01MH123155 (K.J.B.) and R01ES033630 (L.M.H., K.J.B.), R01MH124839 (L.M.H.), R01MH118278 (L.M.H.), R01MH106056 (K.J.B and S.A.), U01DA047880 (K.J.B and S.A), R01DA048279 (K.J.B and S.A), T35DK104689-07 (E.C.), K08MH122911 (G.V.). R01MH125246 (P.R.), U01MH116442 (P.R.), R01MH109677 (P.R.), I01BX002395 (P.R.), and by the State of Connecticut, Department of Mental Health and Addiction Services. This publication does not express the views of the Department of Mental Health and Addiction Services or the State of Connecticut.

Corresponding authors

Correspondence to Laura M. Huckins or Kristen J. Brennand.

Ethics declarations

Competing interests

E.S. is today an employee at Regeneron. K.J.B. is on the advisory board of Cell Stem Cell and a scientific advisor to Rumi Scientific Inc. and Neuro Pharmaka Inc. The remaining authors declare that they have no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Reporting Summary

Transparent Peer Review File

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael Deans, P., Retallick-Townsley, K.G., Li, A. et al. Functional implications of polygenic risk for schizophrenia in human neurons. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67959-z

Download citation

  • Received: 06 May 2025

  • Accepted: 12 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67959-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • The polygenic, omnigenic and stratagenic models of complex disease risk

    • Judit García-González
    • Paul F. O’Reilly

    Nature Genetics (2026)

Download PDF

Associated content

Collection

Precision Medicine

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing