Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Synaptic and intrinsic membrane defects disrupt early neural network dynamics in Down syndrome
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Synaptic and intrinsic membrane defects disrupt early neural network dynamics in Down syndrome

  • Saad B. Hannan  ORCID: orcid.org/0000-0003-4594-08081,2,
  • Ivan Alić  ORCID: orcid.org/0000-0002-8125-81983,4,
  • Aoife Murray  ORCID: orcid.org/0000-0002-4780-39573,
  • Joonhong Kwon5,
  • Martin Mortensen  ORCID: orcid.org/0000-0002-5873-71071,
  • Hyo Jung Kang5,
  • Ante Plećaš  ORCID: orcid.org/0000-0001-5839-889X4,
  • Pollyanna A. Goh3,
  • Niamh L. O’Brien3,
  • Richard Naud  ORCID: orcid.org/0000-0001-7383-30956,
  • Dean Nižetić  ORCID: orcid.org/0000-0001-5486-57613 &
  • …
  • Trevor G. Smart  ORCID: orcid.org/0000-0002-9089-53751 

Nature Communications , Article number:  (2026) Cite this article

  • 827 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Molecular neuroscience
  • Neurophysiology

Abstract

Down syndrome, caused by trisomy 21, affects around six million people worldwide and features learning, memory and language deficits. However, the mechanisms underlying trisomy 21 neurophenotypes involving human cortical circuitry are unknown. By characterising developing neural network dynamics and single cell excitability profiles, from synaptic and voltage-dependent ion channel behaviour using an isogenic induced pluripotent stem cell-derived neuronal model, we show that trisomy 21 impairs the activity and development of cortical circuitry. This is caused by deficient glutamatergic synaptic connectivity and by aberrant intrinsic membrane properties involving K+ and Na+ channels culminating in spike firing defects that weaken neural network activity and disrupt the synchrony of developing neurons. We also identify transiently activated A-type K+ channels, specifically Kv4.3 channels, as a key orchestrator for Down syndrome during neurodevelopment. Overall, these excitability changes will significantly contribute towards the aberrant neurophenotypes observed later on in life.

Similar content being viewed by others

Consequences of trisomy 21 for brain development in Down syndrome

Article 08 October 2024

Molecular cartography of the human down syndrome and trisomic mouse brain

Article Open access 30 September 2025

Altered motor coordination, vocal communication, and cerebellar circuit connectivity in mice carrying a near-complete human chromosome 21

Article Open access 22 November 2025

Data availability

The source data are provided with the Source Data file. Source data are provided with this paper.

Code availability

All associated code can be accessed from: https://github.com/neuralcodinglab.

References

  1. Antonarakis, S. E. et al. Down syndrome. Nat. Rev. Dis. Prim. 6, 9 (2020).

    Google Scholar 

  2. Gardiner, K. et al. Down syndrome: from understanding the neurobiology to therapy. J. Neurosci. 30, 14943–14945 (2010).

    Google Scholar 

  3. Lott, I. T. & Dierssen, M. Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 9, 623–633 (2010).

    Google Scholar 

  4. Waugh, K. A. et al. Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model. Nat. Genet 55, 1034–1047 (2023).

    Google Scholar 

  5. Galdzicki, Z. & J. Siarey, R. Understanding mental retardation in Down’s syndrome using trisomy 16 mouse models. Genes Brain Behav. 2, 167–178 (2003).

    Google Scholar 

  6. Gally, F. et al. The TRPM2 ion channel contributes to cytokine hyperproduction in a mouse model of Down Syndrome. Biochimica et. Biophysica Acta (BBA) - Mol. Basis Dis. 1864, 126–132 (2018).

    Google Scholar 

  7. Kleschevnikov, A. M. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 13, 1006068 (2022).

  8. Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet 18, 147–163 (2017).

    Google Scholar 

  9. Contestabile, A., Magara, S. & Cancedda, L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00054 (2017).

  10. Rudolph, U. & Möhler, H. GABAA receptor subtypes: therapeutic potential in down syndrome, affective disorders, schizophrenia, and autism. Annu Rev. Pharm. Toxicol. 54, 483–507 (2014).

    Google Scholar 

  11. Fernandez, F. & Garner, C. C. Over-inhibition: a model for developmental intellectual disability. Trends Neurosci. 30, 497–503 (2007).

    Google Scholar 

  12. Zorrilla de San Martin, J. Delabar, J.M., Bacci, A. & Potier, M.C. GABAergic over-inhibition, a promising hypothesis for cognitive deficits in Down syndrome. Free Radic. Biol. Med. 114, 33–39 (2018).

  13. Roper, R. J. & Reeves, R. H. Understanding the basis for down syndrome phenotypes. PLoS Genet 2, e50 (2006).

    Google Scholar 

  14. Souchet, B. et al. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol. Dis. 69, 65–75 (2014).

    Google Scholar 

  15. Olmos-Serrano, J. L. et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 89, 1208–1222 (2016).

    Google Scholar 

  16. Klein, J. A. & Haydar, T. F. Neurodevelopment in Down syndrome: Concordance in humans and models. Front Cell Neurosci. https://doi.org/10.3389/fncel.2022.941855 (2022).

  17. Rastogi, M. et al. Integrative multi-omic analysis reveals conserved cell-projection deficits in human Down syndrome brains. Neuron 112, 2503–2523 (2024).

    Google Scholar 

  18. Murray, A. et al. Brief report: Isogenic induced pluripotent stem cell lines from an adult with mosaic down syndrome model accelerated neuronal ageing and neurodegeneration. Stem Cells 33, 2077–2084 (2015).

    Google Scholar 

  19. Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct. Target Ther. 9, 112 (2024).

    Google Scholar 

  20. Weick, J. P. et al. Deficits in human trisomy 21 iPSCs and neurons. Proc. Natl. Acad. Sci. 110, 9962–9967 (2013).

    Google Scholar 

  21. Shi, Y. et al. A human stem cell model of early alzheimer’s disease pathology in down syndrome. Sci. Transl. Med. 4, 124ra29–124ra29 (2012).

    Google Scholar 

  22. Alić, I. et al. Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Mol. Psychiatry 26, 5766–5788 (2021).

    Google Scholar 

  23. Murray, A. et al. Dose imbalance of DYRK1A kinase causes systemic progeroid status in Down syndrome by increasing the un-repaired DNA damage and reducing LaminB1 levels. EBioMedicine 94, 104692 (2023).

    Google Scholar 

  24. Rosenberg, S. S. & Spitzer, N. C. Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, 1–13 (2011).

    Google Scholar 

  25. Hannan, S., Gerrow, K., Triller, A. & Smart, T. G. Phospho-dependent accumulation of GABABRs at presynaptic terminals after NMDAR activation. Cell Rep. 16, 1962–1973 (2016).

    Google Scholar 

  26. Patel, B., Bright, D. P., Mortensen, M., Frølund, B. & Smart, T. G. Context-dependent modulation of GABAARs-mediated tonic currents. J. Neurosci. 36, 607 (2016).

    Google Scholar 

  27. Hannan, S. & Smart, T. G. Cell surface expression of homomeric GABAA receptors depends on single residues in subunit transmembrane domains. J. Biol. Chem. 293, 13427–13439 (2018).

  28. Minere, M. et al. Presynaptic hyperexcitability reversed by positive allosteric modulation of a GABABRs epilepsy variant. Brain 148, 533–548 (2025).

    Google Scholar 

  29. Hannan, S. et al. Differential coassembly of α1-GABAARs associated with epileptic encephalopathy. J. Neurosci. 40, 5518–5530 (2020).

    Google Scholar 

  30. Ascher, P. & Nowak, L. Electrophysiological studies of NMDA receptors. Trends Neurosci. 10, 284–288 (1987).

    Google Scholar 

  31. Thiel, G. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol. 3, 87–95 (1993).

    Google Scholar 

  32. El-Husseini, A. E.-D., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science (1979) 290, 1364–1368 (2000).

    Google Scholar 

  33. Johnson, S. E., Hudson, J. L. & Kapur, J. Synchronization of action potentials during low-magnesium-induced bursting. J. Neurophysiol. 113, 2461–2470 (2015).

    Google Scholar 

  34. Mangan, P. S. & Kapur, J. Factors underlying bursting behavior in a network of cultured hippocampal neurons exposed to zero magnesium. J. Neurophysiol. 91, 946–957 (2004).

    Google Scholar 

  35. González, C. et al. K+ Channels: Function-Structural Overview. in Comprehensive Physiol. https://doi.org/10.1002/cphy.c110047 (2012).

  36. Connor, J. A. & Stevens, C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53 (1971).

    Google Scholar 

  37. Rudy, B. & McBain, C. J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526 (2001).

    Google Scholar 

  38. Johnston, J. Pharmacology of A-Type K+ Channels. in Pharmacology of Potassium Channels (eds. Gamper, N. & Wang, K.) 167–183 (Springer International Publishing, Cham, https://doi.org/10.1007/164_2021_456 (2021).

  39. Seol, S., Kwon, J. & Kang, H. J. Cell type characterization of spatiotemporal gene co-expression modules in Down syndrome brain. iScience 26, 105884 (2023).

    Google Scholar 

  40. Lüthi, A. & McCormick, D. A. H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).

    Google Scholar 

  41. Tabak, J., Toporikova, N., Freeman, M. E. & Bertram, R. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput Neurosci. 22, 211–222 (2007).

    Google Scholar 

  42. Toporikova, N., Tabak, J., Freeman, M. E. & Bertram, R. A-type K+ current can act as a trigger for bursting in the absence of a slow variable. Neural Comput 20, 436–451 (2008).

    Google Scholar 

  43. Volpato, V. & Webber, C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis. Model Mech. 13, dmm042317 (2020).

    Google Scholar 

  44. Graf, J. et al. Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo. Elife 11, e82756 (2022).

    Google Scholar 

  45. Ruiz-Mejias, M. et al. Overexpression of Dyrk1A, a Down syndrome candidate, decreases excitability and impairs gamma oscillations in the prefrontal cortex. J. Neurosci. 36, 3648–3659 (2016).

    Google Scholar 

  46. Lana-Elola, E. et al. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci. Transl. Med 16, eadd6883 (2025).

    Google Scholar 

  47. Chakrabarti, L. et al. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat. Neurosci. 13, 927–934 (2010).

    Google Scholar 

  48. Baburamani, A. A., Patkee, P. A., Arichi, T. & Rutherford, M. A. New approaches to studying early brain development in Down syndrome. Dev. Med Child Neurol. 61, 867–879 (2019).

    Google Scholar 

  49. Real, R. et al. In vivo modeling of human neuron dynamics and Down syndrome. Science (1979) 362, eaau1810 (2018).

    Google Scholar 

  50. Stern, S., Segal, M. & Moses, E. Involvement of potassium and cation channels in hippocampal abnormalities of embryonic Ts65Dn and Tc1 trisomic mice. EBioMedicine 2, 1048–1062 (2015).

    Google Scholar 

  51. Cramer, N. P., Best, T. K., Stoffel, M., Siarey, R. J. & Galdzicki, Z. GABAB-GIRK2-mediated signaling in Down syndrome. Adv. Pharmacol. 58, 397–426 (2010).

    Google Scholar 

  52. Vacher, H., Mohapatra, D. P. & Trimmer, J. S. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol. Rev. 88, 1407–1447 (2008).

    Google Scholar 

  53. Smets, K. et al. First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy. BMC Med Genet 16, 51 (2015).

    Google Scholar 

  54. Zhang, Y., Jiang, H. & Li, X. Cardiocerebral channelopathy caused by KCND3 mutation in a child: a case report. Front Pediatr. https://doi.org/10.3389/fped.2022.1019122 (2022).

  55. Garcia-Junco-Clemente, P. et al. Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism. Proc. Natl. Acad. Sci. 110, 18297–18302 (2013).

    Google Scholar 

  56. Urrutia, J. et al. Therapeutic role of voltage-gated potassium channels in age-related neurodegenerative diseases. Front Cell Neurosci. https://doi.org/10.3389/fncel.2024.1406709 (2024).

  57. Prelich, G. Gene overexpression: uses, mechanisms, and interpretation. Genetics 190, 841–854 (2012).

    Google Scholar 

  58. Solovei, I. & Cremer, M. 3D-FISH on Cultured Cells Combined with Immunostaining. in Fluorescence in situ Hybridization (FISH): Protocols and Applications (eds. Bridger, J. M. & Volpi, E. V.) 117–126 https://doi.org/10.1007/978-1-60761-789-1_8 (Humana Press, Totowa, NJ, 2010).

  59. Paiva, A. R. C., Park, I. & Príncipe, J. C. A comparison of binless spike train measures. Neural Comput Appl 19, 405–419 (2010).

    Google Scholar 

  60. Thomas, P. & Smart, T. G. Use of electrophysiological methods in the study of recombinant and native neuronal ligand-gated ion channels. Curr. Protoc. Pharm. 59, 11.4.1–11.4.37 (2012).

    Google Scholar 

  61. Keros, S. & McBain, C. J. Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J. Neurosci. 17, 3476–3487 (1997).

    Google Scholar 

  62. Chan, C. S., Shigemoto, R., Mercer, J. N. & Surmeier, D. J. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J. Neurosci. 24, 9921–9932 (2004).

    Google Scholar 

  63. Hannan, S. B., Penzinger, R., Mickute, G. & Smart, T. G. CGP7930 - An allosteric modulator of GABABRs, GABAARs and inwardly-rectifying potassium channels. Neuropharmacology 238, 109644 (2023).

    Google Scholar 

  64. Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-Activated Cation Currents: From Molecules to Physiological Function. Annu. Rev. Physiol. 65, 453–480 (2003).

  65. Wahl-Schott, C. & Biel, M. HCN channels: Structure, cellular regulation and physiological function. Cell. Mol. Life Sci. 66, 470–494 (2008).

    Google Scholar 

  66. Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).

    Google Scholar 

  67. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was funded by a Wellcome Trust Collaborative Award in Science 217199/Z/19/Z. AM was funded by a William Harvey Academy Fellowship, co-funded by the People Programme (Marie Curie Actions) under REA no. 608765. SBH was awarded a fellowship from International Rett Syndrome Foundation (3606). AP and IA were funded by Adris foundation, NPOO-NextGeneration (NEURO-MORF) and the Croatian Science Foundation (HRZZ-UIP-2025-02-5828), CRP-ICGEB (CRP/HRV25-03).

Author information

Authors and Affiliations

  1. Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

    Saad B. Hannan, Martin Mortensen & Trevor G. Smart

  2. Department of Molecular and Cellular Biology, Harvard University; 52 Oxford Street Cambridge, Cambridge, MA, USA

    Saad B. Hannan

  3. Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

    Ivan Alić, Aoife Murray, Pollyanna A. Goh, Niamh L. O’Brien & Dean Nižetić

  4. Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia

    Ivan Alić & Ante Plećaš

  5. Department of Life Science, Chung-Ang University; 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea

    Joonhong Kwon & Hyo Jung Kang

  6. Department of Cellular and Molecular Medicine, University of Ottawa; 451 Smyth Rd, Ottawa, ON, Canada

    Richard Naud

Authors
  1. Saad B. Hannan
    View author publications

    Search author on:PubMed Google Scholar

  2. Ivan Alić
    View author publications

    Search author on:PubMed Google Scholar

  3. Aoife Murray
    View author publications

    Search author on:PubMed Google Scholar

  4. Joonhong Kwon
    View author publications

    Search author on:PubMed Google Scholar

  5. Martin Mortensen
    View author publications

    Search author on:PubMed Google Scholar

  6. Hyo Jung Kang
    View author publications

    Search author on:PubMed Google Scholar

  7. Ante Plećaš
    View author publications

    Search author on:PubMed Google Scholar

  8. Pollyanna A. Goh
    View author publications

    Search author on:PubMed Google Scholar

  9. Niamh L. O’Brien
    View author publications

    Search author on:PubMed Google Scholar

  10. Richard Naud
    View author publications

    Search author on:PubMed Google Scholar

  11. Dean Nižetić
    View author publications

    Search author on:PubMed Google Scholar

  12. Trevor G. Smart
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualisation–S.B.H., D.N., T.G.S. Electrophysiology–S.B.H., M.M. Confocal Imaging–I.A., A.P. Differentiation of iPSC cultures–A.M., I.A., A.P., P.A.G., N.L.O’B. Maintenance of cultures-A.M., I.A., A.P., P.A.G., N.L.O.B., S.B.H. Transcriptomics analysis–J.K., H.J.K. Mathematical modelling–R.N. Funding acquisition and project leadership–S.B.H., D.N. and T.G.S. The initial draft was written by S.B.H. and T.G.S., and all authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Saad B. Hannan, Dean Nižetić or Trevor G. Smart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Ying Liu, Ludovic Tricoire, and Kaspar Vogt for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary data 2

Supplementary data 3

Supplementary data 4

Supplementary data 5

Supplementary data 6

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannan, S.B., Alić, I., Murray, A. et al. Synaptic and intrinsic membrane defects disrupt early neural network dynamics in Down syndrome. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68048-x

Download citation

  • Received: 01 April 2025

  • Accepted: 16 December 2025

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68048-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing