Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Uncovering the molecular logic of cortical wiring between neuronal subtypes across development through ligand–receptor inference
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Uncovering the molecular logic of cortical wiring between neuronal subtypes across development through ligand–receptor inference

  • Rémi Mathieu1,
  • Tangra Draia-Nicolau  ORCID: orcid.org/0000-0001-5518-61701,
  • Léa Corbières1,
  • Annousha Govindan1,
  • Vianney Bensa1,
  • Emilie Pallesi-Pocachard1,
  • Lucas Silvagnoli  ORCID: orcid.org/0009-0009-1032-47661,
  • Alfonso Represa1,
  • Carlos Cardoso  ORCID: orcid.org/0000-0003-1914-95531,
  • Ludovic Telley  ORCID: orcid.org/0000-0002-5041-19972,3 na1 &
  • …
  • Antoine de Chevigny  ORCID: orcid.org/0000-0002-7413-05911 na1 

Nature Communications , Article number:  (2026) Cite this article

  • 2709 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Molecular neuroscience
  • Neuronal development
  • Synaptic development

Abstract

The cerebral cortex comprises diverse excitatory and inhibitory neuron subtypes, each with distinct laminar positions and connectivity patterns. Yet, the molecular logic underlying their precise wiring remains poorly understood. To identify ligand–receptor (LR) interactions involved in cortical circuit assembly, we tracked gene expression dynamics in mice across major neuronal populations at 17 developmental stages using single-cell transcriptomics. This generated a comprehensive atlas of LR-mediated communication between excitatory and inhibitory neuron subtypes, capturing known and novel interactions. Notably, we identified NEOGENIN-1 as the principal receptor for CBLN4 during the perinatal period, mediating synapse formation between somatostatin-expressing interneurons and glutamatergic neurons. We also identified members of the cadherin superfamily as candidate regulators of perisomatic inhibition from parvalbumin-expressing basket cells onto deep and superficial excitatory neurons, exerting opposing effects on synapse formation. These findings suggest a context-dependent role for cadherins in synaptic specificity and underscore the power of single-cell transcriptomics for decoding the molecular mechanisms of cortical wiring.

Similar content being viewed by others

Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations

Article Open access 14 May 2025

Molecular logic of cellular diversification in the mouse cerebral cortex

Article 23 June 2021

Genetic and epigenetic coordination of cortical interneuron development

Article 22 September 2021

Data availability

Raw sc/snRNA-seq data generated in this study are available in the ArrayExpress database under accession E-MTAB-16260, and bulk RNA-seq data are available under accession E-MTAB-16355 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies). Processed data, QC outputs, and derived RDS files are deposited on Zenodo (https://zenodo.org/records/11634657). Interactive exploration of inferred signaling networks is available through the scLRSomatoDev Shiny application at https://sclrsomatodev.online/. Source data are provided with this paper.

Code availability

All scripts used for data preprocessing, quality control, ligand–receptor inference, ontology annotation, and enrichment analysis were written in R and Python. The complete codebase, including custom functions and documentation, is publicly available on Zenodo (https://zenodo.org/records/11634657). Additional documentation and tutorials are provided online: Documentation: https://cortical-interactome.github.io/scLRSomatoDev-Docs/ Video tutorials: https://www.youtube.com/playlist?list=PLyfGSyn6Q6UY82ccuHRZQmRchVx6DskfJ.

References

  1. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953.e19 (2020).

    Google Scholar 

  2. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Google Scholar 

  3. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

    Google Scholar 

  4. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Google Scholar 

  5. Zhang, M. et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023).

    Google Scholar 

  6. del Pino, I. et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 79, 1152–1168 (2013).

    Google Scholar 

  7. Jiang, X. et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015).

    Google Scholar 

  8. Motta, A. et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366, eaay3134 (2019).

    Google Scholar 

  9. Campagnola, L. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861 (2022).

    Google Scholar 

  10. Schneider-Mizell, C. M. et al. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. bioRxiv 6, 2023.01.23.525290 (2023).

  11. Favuzzi, E. et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 363, 413–417 (2019).

    Google Scholar 

  12. Fazzari, P. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–1380 (2010).

    Google Scholar 

  13. Bernard, C. et al. Cortical wiring by synapse type–specific control of local protein synthesis. Science 378, eabm7466 (2022).

    Google Scholar 

  14. Pla, R., Borrell, V., Flames, N. & Marín, O. Layer acquisition by cortical GABAergic interneurons is independent of reelin signaling. J. Neurosci. 26, 6924–6934 (2006).

    Google Scholar 

  15. Lodato, S. et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69, 763–779 (2011).

    Google Scholar 

  16. Ye, Z. et al. Instructing perisomatic inhibition by direct lineage reprogramming of neocortical projection neurons. Neuron 88, 475–483 (2015).

    Google Scholar 

  17. Wester, J. C. et al. Neocortical projection neurons instruct inhibitory interneuron circuit development in a lineage-dependent manner. Neuron 102, 960–975.e6 (2019).

    Google Scholar 

  18. Miyoshi, G. & Fishell, G. GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cerebral Cortex 21, 845–852 (2011).

    Google Scholar 

  19. Baudoin, J.-P. et al. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. Neuron 76, 1108–1122 (2012).

    Google Scholar 

  20. Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    Google Scholar 

  21. Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

    Google Scholar 

  22. Priya, R. et al. Activity regulates cell death within cortical interneurons through a calcineurin-dependent mechanism. Cell Reports 22, 1695–1709 (2018).

    Google Scholar 

  23. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    Google Scholar 

  24. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Google Scholar 

  25. Mi, D. et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

    Google Scholar 

  26. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Google Scholar 

  27. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 601, 404–409 (2022).

    Google Scholar 

  28. Lee, D. R. et al. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 11, e71864 (2022).

    Google Scholar 

  29. BRAIN Initiative Cell Census Network (BICCN) et al. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Google Scholar 

  30. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Google Scholar 

  31. Mandai, K., Rikitake, Y., Mori, M. & Takai, Y. Nectins and nectin-like molecules in development and disease. Curr. Top. Dev. Biol. 112, 197–231 (2015).

  32. Friedman, L. G., Benson, D. L. & Huntley, G. W. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top. Dev. Biol. 112, 415–465 (Elsevier, 2015).

  33. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Google Scholar 

  34. Libé-Philippot, B. et al. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proc. Natl. Acad. Sci. USA 114, 7765–7774 (2017).

    Google Scholar 

  35. Li, G. et al. Regional distribution of cortical interneurons and development of inhibitory tone are regulated by Cxcl12/Cxcr4 signaling. J. Neurosci. 28, 1085–1098 (2008).

    Google Scholar 

  36. López-Bendito, G. et al. Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons. J. Neurosci. 28, 1613–1624 (2008).

    Google Scholar 

  37. Borrell, V. & Marín, O. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9, 1284–1293 (2006).

    Google Scholar 

  38. Tiveron, M.-C. et al. Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J. Neurosci. 26, 13273–13278 (2006).

    Google Scholar 

  39. Causeret, F., Moreau, M. X., Pierani, A. & Blanquie, O. The multiple facets of Cajal-Retzius neurons. Development 148, dev199409 (2021).

    Google Scholar 

  40. Stumm, R. K. et al. CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci. 23, 5123–5130 (2003).

    Google Scholar 

  41. Wang, Y. et al. CXCR4 and CXCR7 Have distinct functions in regulating interneuron migration. Neuron 69, 61–76 (2011).

    Google Scholar 

  42. Tanaka, D. H. et al. CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide y-expressing gabaergic interneurons. Cerebral Cortex 20, 2810–2817 (2010).

    Google Scholar 

  43. Graf, E. R., Zhang, X., Jin, S.-X., Linhoff, M. W. & Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Google Scholar 

  44. Krueger, D. D., Tuffy, L. P., Papadopoulos, T. & Brose, N. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr. Opin. Neurobiol, 22, 412–422 (2012).

    Google Scholar 

  45. Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).

    Google Scholar 

  46. Basu, R., Taylor, M. R. & Williams, M. E. The classic cadherins in synaptic specificity. Cell Adhesion Migration 9, 193–201 (2015).

    Google Scholar 

  47. Baruzzo, G., Cesaro, G. & Di Camillo, B. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm. Bioinformatics 38, 1920–1929 (2022).

    Google Scholar 

  48. Stepanyants, A. & Chklovskii, D. Neurogeometry and potential synaptic connectivity. Trends Neurosci. 28, 387–394 (2005).

    Google Scholar 

  49. Mòdol, L., Moissidis, M., Selten, M., Oozeer, F. & Marín, O. Somatostatin interneurons control the timing of developmental desynchronization in cortical networks. Neuron 112, 2015–2030.e5 (2024).

    Google Scholar 

  50. Exposito-Alonso, D. et al. Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits. eLife 9, e57000 (2020).

    Google Scholar 

  51. Batista-Brito, R. et al. Developmental dysfunction of vip interneurons impairs cortical circuits. Neuron 95, 884–895.e9 (2017).

    Google Scholar 

  52. Fossati, M. et al. Trans-synaptic signaling through the glutamate receptor delta-1 mediates inhibitory synapse formation in cortical pyramidal neurons. Neuron 104, 1081–1094.e7 (2019).

    Google Scholar 

  53. Liakath-Ali, K., Polepalli, J. S., Lee, S.-J., Cloutier, J.-F. & Südhof, T. C. Transsynaptic cerebellin 4–neogenin 1 signaling mediates LTP in the mouse dentate gyrus. Proc. Natl. Acad. Sci. USA. 119, e2123421119 (2022).

    Google Scholar 

  54. Lv, X. et al. Patterned cPCDH expression regulates the fine organization of the neocortex. Nature 612, 503–511 (2022).

    Google Scholar 

  55. Lesch, K.-P. et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J. Neural Transm. 115, 1573–1585 (2008).

    Google Scholar 

  56. Sanders, S. J. et al. Multiple recurrent de novo CNVs, Including duplications of the 7q11.23 williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Google Scholar 

  57. Jézéquel, J. et al. Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations. Nat. Commun. 216, 4481 (2023).

  58. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Google Scholar 

  59. Cabello-Aguilar, S., Fau, C., Lacroix, M. & Colinge, J. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 48, e55 (2020).

  60. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A. & Forrest, A. R. R. Predicting cell-to-cell communication networks using NATMI. Nat. Commun. 11, 5011 (2020).

    Google Scholar 

  61. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Google Scholar 

  62. Cheng, J., Zhang, J., Wu, Z. & Sun, X. Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19. Brief. Bioinform. 22, 988–1005 (2021).

    Google Scholar 

  63. Hu, Y., Peng, T., Gao, L. & Tan, K. CytoTalk: De novo construction of signal transduction networks using single-cell transcriptomic data. Sci. Adv. 7, eabf1356 (2021).

    Google Scholar 

  64. Butler, M., Rafi, S., Hossain, W., Stephan, D. & Manzardo, A. Whole exome sequencing in females with autism implicates novel and candidate genes. IJMS 16, 1312–1335 (2015).

    Google Scholar 

  65. Lepiemme, F. et al. Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science 376, eabn6204 (2022).

    Google Scholar 

  66. Zhang, M. et al. A molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343−354 (2023)

  67. Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–33 2023)

  68. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Google Scholar 

  69. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 8, 281–291.e9 (2019).

    Google Scholar 

  70. Leary, J. et al. Sub-cluster identification through semi-supervised optimization of rare-cell silhouettes (SCISSORS) in single-cell RNA-sequencing. Bioinformatics 39, btad449 (2021).

  71. Fischer, S. & Gillis, J. How many markers are needed to robustly determine a cell’s type? iScience. 25, 103378 (2022).

  72. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Google Scholar 

  73. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Google Scholar 

  74. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Google Scholar 

  75. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A J. Integrative Biol. 16, 284–287 (2012).

    Google Scholar 

  76. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    Google Scholar 

  77. Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).

    Google Scholar 

  78. Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018).

    Google Scholar 

  79. Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database 2015, bav095 (2015).

    Google Scholar 

  80. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Google Scholar 

  81. Castanza, A. S. et al. Extending support for mouse data in the molecular signatures database (MSigDB). Nat. Methods 20, 1619–1620 (2023).

    Google Scholar 

  82. Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021).

    Google Scholar 

  83. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comparative Neurol. 467, 60–79 (2003).

    Google Scholar 

  84. Staiger, J. F. et al. Functional diversity of layer iv spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cerebral Cortex 14, 690–701 (2004).

    Google Scholar 

  85. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Google Scholar 

  86. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    Google Scholar 

  87. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    Google Scholar 

  88. Nigro, M. J., Hashikawa-Yamasaki, Y. & Rudy, B. Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex. J. Neurosci. 38, 1622–1633 (2018).

    Google Scholar 

  89. Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).

    Google Scholar 

  90. Scala, F. et al. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nat. Commun. 10, 4174 (2019).

    Google Scholar 

  91. Billeh, Y. N. et al. Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.e18 (2020).

    Google Scholar 

  92. Walker, L. A. et al. nGauge: Integrated and extensible neuron morphology analysis in python. Neuroinform 20, 755–764 (2022).

    Google Scholar 

  93. Bates, A. S. et al. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 9, e53350 (2020).

    Google Scholar 

  94. Genes4Epilepsy. An epilepsy gene resource - Oliver - Epilepsia - Wiley Online Library. https://onlinelibrary-wiley-com.insb.bib.cnrs.fr/doi/10.1111/epi.17547 (2023).

  95. Merikangas, A. K. et al. What genes are differentially expressed in individuals with schizophrenia? a systematic review. Mol. Psychiatry 27, 1373–1383 (2022).

    Google Scholar 

  96. Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank Julien Prados (UNIGE) for providing his Torch model for artificial neural network (ANN)-based cell type identification, members of the Cardoso laboratory for their input, and the Molecular and Cellular Biology Facility (PBMC), the Animal Core Facility and the Imaging Facility (inMagic) INMED platforms. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Agence Nationale de la Recherche with ANR-13-JSV4-0006 SynD2 and ANR-23-CE16-0021 CALIN (A.d.C.), NeuroMarseille ICR+ Grant 2021 (A.d.C.), Fondation pour la Recherche sur le Cerveau ‘Développement et vieillissement’ (A.d.C.), Fondation Lejeune (A.d.C.), European Community 7th Framework programs (Development and Epilepsy; Strategies for Innovative Research to improve diagnosis, prevention and treatment in children with difficult to treat Epilepsy [DESIRE], Health-F2-602531-2013 (A. R., C.C.), and by an Excellence Initiative of Aix–Marseille University/A*MIDEX grant (CALIN-R24002AA) of the French ‘Investissements d’Avenir’ programme (C.C., A.d.C.). Research in the Telley laboratory was supported by ERC starting grant CERDEV_759112 and a SNSF grant 31003A_182676/1.

Author information

Author notes
  1. These authors jointly supervised this work: Ludovic Telley, Antoine de Chevigny.

Authors and Affiliations

  1. INMED, INSERM, Aix Marseille University, Marseille, France

    Rémi Mathieu, Tangra Draia-Nicolau, Léa Corbières, Annousha Govindan, Vianney Bensa, Emilie Pallesi-Pocachard, Lucas Silvagnoli, Alfonso Represa, Carlos Cardoso & Antoine de Chevigny

  2. Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland

    Ludovic Telley

  3. University Claude Bernard Lyon 1, MeLiS; UCBL; CNRS UMR 5284, Lyon, France

    Ludovic Telley

Authors
  1. Rémi Mathieu
    View author publications

    Search author on:PubMed Google Scholar

  2. Tangra Draia-Nicolau
    View author publications

    Search author on:PubMed Google Scholar

  3. Léa Corbières
    View author publications

    Search author on:PubMed Google Scholar

  4. Annousha Govindan
    View author publications

    Search author on:PubMed Google Scholar

  5. Vianney Bensa
    View author publications

    Search author on:PubMed Google Scholar

  6. Emilie Pallesi-Pocachard
    View author publications

    Search author on:PubMed Google Scholar

  7. Lucas Silvagnoli
    View author publications

    Search author on:PubMed Google Scholar

  8. Alfonso Represa
    View author publications

    Search author on:PubMed Google Scholar

  9. Carlos Cardoso
    View author publications

    Search author on:PubMed Google Scholar

  10. Ludovic Telley
    View author publications

    Search author on:PubMed Google Scholar

  11. Antoine de Chevigny
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.d.C. and R.M. initiated the study. A.d.C. and L.T. conceptualized and supervised the study. A.d.C., L.T. and R.M. designed and conceptualized the experiments. A.d.C. L.T and R.M. performed most experiments. R.M. analyzed most experiments, supervised by L.T. and A.d.C. T.D.N. performed analyses for Figs. 3 and 4 and revision analysis. R.M. and L.S generated the Shiny App scLRSomatodev (https://sclrsomatodev.online/). C.C., A.G., L.C. and V.B. performed and analyzed shRNA design/production and in utero electroporations. E.P. validated shRNAs and performed proximity ligation assays. A.R participated in project management and help in manuscript writing and corrections. A.d.C. L.T. and R.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Ludovic Telley or Antoine de Chevigny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, R., Draia-Nicolau, T., Corbières, L. et al. Uncovering the molecular logic of cortical wiring between neuronal subtypes across development through ligand–receptor inference. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68059-8

Download citation

  • Received: 09 May 2025

  • Accepted: 16 December 2025

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68059-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing