Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Tunable enantioselective electrocatalytic functionalization of unactivated alkenes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 January 2026

Tunable enantioselective electrocatalytic functionalization of unactivated alkenes

  • Tian Xie1 na1,
  • Minghao Liu  ORCID: orcid.org/0009-0007-6493-96301 na1,
  • Jiayin Zhang1,
  • Lingzi Peng  ORCID: orcid.org/0000-0001-5180-80401 &
  • …
  • Chang Guo  ORCID: orcid.org/0000-0003-4022-95821,2 

Nature Communications , Article number:  (2026) Cite this article

  • 2897 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Asymmetric catalysis
  • Electrocatalysis
  • Synthetic chemistry methodology

Abstract

The tunable enantioselective functionalization of alkene feedstocks represents a highly desirable yet predominantly unresolved tactic for generating high-value scaffolds. Herein, we report a tunable enantioselective electrolytic system for dehydrogenative allylation, dehydrogenative alkenylation, and hydroalkylation reactions with identical substrates to afford structurally diverse products. This success hinges on the rational design of the stereoselective coupling of an electrogenerated nickel-bound α-carbonyl radical species that can trap unactivated alkenes and engage in various subsequent radical termination processes to enable the intermolecular functionalization of unactivated alkenes. The mild reaction conditions and sustainable electrocatalytic radical platform guarantee excellent functional group tolerance and substrate compatibility with unactivated alkenes (63 examples, up to 98% e.e.), and the process evolves H₂ without the need for external chemical oxidants. The utility of this enantioselective electrolytic strategy is demonstrated by its application in the stereoselective formal synthesis of (S)-SYK inhibitor, signifying substantial progress in synthetic methods.

Similar content being viewed by others

Catalytic asymmetric hydroalkylation of 1,1-dialkyl-substituted alkenes with unactivated alkyl electrophiles

Article 13 January 2026

Electroreduction of unactivated alkenes using water as hydrogen source

Article Open access 30 March 2024

Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes

Article Open access 04 January 2023

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2430133 (3t) and CCDC 2430132 (4l). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study, including experimental procedures and compound characterization, NMR, and HPLC are available within the Article and its Supplementary Information or from the corresponding authors. The authors declare that all other data supporting the findings of this study are available within this Article and its Supplementary Information. Source Data are provided with this paper. NMR data in a Mnova file format and HPLC traces are available at Zenodo at https://zenodo.org/records/17364427, under the Creative Commons Attribution 4.0 International license. Source data are provided with this paper.

References

  1. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Google Scholar 

  2. Zheng, K., Liu, X. & Feng, X. Recent advances in metal-catalyzed asymmetric 1,4-conjugate addition (ACA) of nonorganometallic nucleophiles. Chem. Rev. 118, 7586–7656 (2018).

    Google Scholar 

  3. Song, L. et al. Visible-light photoredox-catalyzed remote difunctionalizing carboxylation of unactivated alkenes with CO2. Angew. Chem. Int. Ed. 59, 21121–21128 (2020).

    Google Scholar 

  4. Gnaim, S. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature 605, 687–695 (2022).

    Google Scholar 

  5. Zhou, X.-S. et al. Direct asymmetric α-alkylation of β-ketocarbonyl compounds with simple olefins by photoredox-nickel-hydrogen atom transfer triple catalysis. Angew. Chem. Int. Ed. 64, e202424915 (2025).

    Google Scholar 

  6. Zhan, G., Du, W. & Chen, Y.-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem. Soc. Rev. 46, 1675–1692 (2017).

    Google Scholar 

  7. Dénès, F., Pérez-Luna, A. & Chemla, F. Addition of metal enolate derivatives to unactivated carbon−carbon multiple bonds. Chem. Rev. 110, 2366–2447 (2010).

    Google Scholar 

  8. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Google Scholar 

  9. Zhu, L. et al. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: use of solvent effects to enable anilide oxidation. Angew. Chem. Int. Ed. 55, 2226–2229 (2016).

    Google Scholar 

  10. Cai, C.-Y. et al. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C–H functionalizations. Nat. Commun. 12, 3745 (2021).

    Google Scholar 

  11. Lei, G., Xu, M., Chang, R., Funes-Ardoiz, I. & Ye, J. Hydroalkylation of unactivated olefins via visible-light-driven dual hydrogen atom transfer catalysis. J. Am. Chem. Soc. 143, 11251–11261 (2021).

    Google Scholar 

  12. Chen, M., Wu, Z.-J., Song, J. & Xu, H.-C. Electrocatalytic allylic C−H alkylation enabled by a dual-function cobalt catalyst. Angew. Chem. Int. Ed. 61, e202115954 (2022).

    Google Scholar 

  13. Liang, K., Zhang, Q. & Guo, C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. Sci. Adv. 8, eadd7134 (2022).

    Google Scholar 

  14. Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    Google Scholar 

  15. Wang, S. et al. Cobalt-catalysed allylic fluoroalkylation of terpenes. Nat. Synth. 2, 1202–1210 (2023).

    Google Scholar 

  16. Wang, S. et al. Radical-triggered translocation of C–C double bond and functional group. Nat. Chem. 16, 1621–1629 (2024).

    Google Scholar 

  17. Jia, Z., Cheng, L., Zhang, L. & Luo, S. Asymmetric C–H dehydrogenative alkenylation via a photo-induced chiral α-imino radical intermediate. Nat. Commun. 15, 4044 (2024).

    Google Scholar 

  18. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Google Scholar 

  19. Feng, R., Smith, J. A. & Moeller, K. D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc. Chem. Res. 50, 2346–2352 (2017).

    Google Scholar 

  20. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Google Scholar 

  21. Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2018).

    Google Scholar 

  22. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Google Scholar 

  23. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    Google Scholar 

  24. Möhle, S. et al. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Google Scholar 

  25. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    Google Scholar 

  26. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    Google Scholar 

  27. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Google Scholar 

  28. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis?. Chem 6, 2484–2496 (2020).

    Google Scholar 

  29. Zhang, J., Zhu, W., Chen, Z., Zhang, Q. & Guo, C. Dual-catalyzed stereodivergent electrooxidative homocoupling of benzoxazolyl acetate. J. Am. Chem. Soc. 146, 1522–1531 (2024).

    Google Scholar 

  30. Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    Google Scholar 

  31. Zhang, Q., Chang, X., Peng, L. & Guo, C. Asymmetric Lewis acid catalyzed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).

    Google Scholar 

  32. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Google Scholar 

  33. Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).

    Google Scholar 

  34. Liang, K., Zhang, Q. & Guo, C. Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination. Nat. Synth. 2, 1184–1193 (2023).

    Google Scholar 

  35. Li, J. et al. Enantioselective nickel-electrocatalyzed cross-dehydrogenative α- and γ-nitroalkylation. J. Am. Chem. Soc. 146, 34043–34052 (2024).

    Google Scholar 

  36. Wang, Q. et al. Enantioselective multicomponent electrochemical difunctionalization of terminal alkynes. J. Am. Chem. Soc. 147, 8917–8927 (2024).

    Google Scholar 

  37. DeLano, T. J. & Reisman, S. E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis. ACS Catal 9, 6751–6754 (2019).

    Google Scholar 

  38. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Google Scholar 

  39. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C−H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).

    Google Scholar 

  40. Gao, P.-S. et al. CuII/TEMPO-catalyzed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines through Shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).

    Google Scholar 

  41. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Google Scholar 

  42. Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Google Scholar 

  43. Ding, W., Li, M., Fan, J. & Cheng, X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction. Nat. Commun. 13, 5642 (2022).

    Google Scholar 

  44. Gao, S., Wang, C., Yang, J. & Zhang, J. Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nat. Commun. 14, 1301 (2023).

    Google Scholar 

  45. Hu, X., Cheng-Sánchez, I., Cuesta-Galisteo, S. & Nevado, C. Nickel-catalyzed enantioselective electrochemical reductive cross-coupling of aryl aziridines with alkenyl bromides. J. Am. Chem. Soc. 145, 6270–6279 (2023).

    Google Scholar 

  46. Tan, X., Wang, Q. & Sun, J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat. Commun. 14, 357 (2023).

    Google Scholar 

  47. von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    Google Scholar 

  48. Zhou, G. et al. Base-promoted electrochemical CoII-catalyzed enantioselective C−H oxygenation. Angew. Chem. Int. Ed. 62, e202302964 (2023).

    Google Scholar 

  49. Mazzarella, D. et al. Electrochemical asymmetric radical functionalization of aldehydes enabled by a redox shuttle. Angew. Chem. Int. Ed. 63, e202401361 (2024).

    Google Scholar 

  50. Sibi, M. P., Ji, J., Wu, J. H., Gürtler, S. & Porter, N. A. Chiral Lewis acid catalysis in radical reactions: enantioselective conjugate radical additions. J. Am. Chem. Soc. 118, 9200–9201 (1996).

    Google Scholar 

  51. Sibi, M. P., Ji, J., Sausker, J. B. & Jasperse, C. P. Free radical-mediated intermolecular conjugate additions. Effect of the Lewis acid, chiral auxiliary, and additives on diastereoselectivity. J. Am. Chem. Soc. 121, 7517–7526 (1999).

    Google Scholar 

  52. Sibi, M. P. & Chen, J. Enantioselective tandem radical reactions: vicinal difunctionalization in acyclic systems with control over relative and absolute stereochemistry. J. Am. Chem. Soc. 123, 9472–9473 (2001).

    Google Scholar 

  53. Sibi, M. P., Zimmerman, J. & Rheault, T. Enantioselective conjugate radical addition to β-acyloxy acrylate acceptors: An approach to acetate Aldol-type products. Angew. Chem. Int. Ed. 42, 4521–4523 (2003).

    Google Scholar 

  54. Sibi, M. P., Petrovic, G. & Zimmerman, J. Enantioselective radical addition/trapping reactions with α,β-disubstituted unsaturated imides. Synthesis of anti-propionate Aldols. J. Am. Chem. Soc. 127, 2390–2391 (2005).

    Google Scholar 

  55. Curtis, N. R. et al. Asymmetric fluorination approach to the scalable synthesis of a SYK Inhibitor. Org. Process Res. Dev. 19, 865–871 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank the supercomputing center of USTC for providing computational resources and the Instruments Center for Physical Science of USTC. The authors acknowledge financial support from the National Key R&D Program of China (2023YFA1506700, C.G.), the National Natural Science Foundation of China (grant no. 21971227, 22222113, C.G.), CAS Project for Young Scientists in Basic Research (YSBR-054, C.G.), the Fundamental Research Funds for the Central Universities (WK9990000090, WK9990000111, C.G.), and the Fundamental Research Funds for the Central Universities (WK9990000133, C.G.). The project was supported by the Open Research Fund of the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, China Postdoctoral Science Foundation (grant no.2023M743373, 2024T170881, L.P.), and the Postdoctoral Fellowship Program of CPSF (GZB20230708, L.P.).

Author information

Author notes
  1. These authors contributed equally: Tian Xie, Minghao Liu.

Authors and Affiliations

  1. Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China

    Tian Xie, Minghao Liu, Jiayin Zhang, Lingzi Peng & Chang Guo

  2. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

    Chang Guo

Authors
  1. Tian Xie
    View author publications

    Search author on:PubMed Google Scholar

  2. Minghao Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiayin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Lingzi Peng
    View author publications

    Search author on:PubMed Google Scholar

  5. Chang Guo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.G. conceived the project. T.X. performed the experiments and analyzed the data. M.L., J.Z., and L.P. synthesized the substrates and ligands. All authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Chang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Zhongyi Zeng and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Liu, M., Zhang, J. et al. Tunable enantioselective electrocatalytic functionalization of unactivated alkenes. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68123-3

Download citation

  • Received: 17 June 2025

  • Accepted: 17 December 2025

  • Published: 02 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68123-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing