Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Flavonoid-mediated bacterial spermidine biosynthesis enhances vitamin accumulation in tomato fruits
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Flavonoid-mediated bacterial spermidine biosynthesis enhances vitamin accumulation in tomato fruits

  • Wenjiang Fu  ORCID: orcid.org/0009-0002-5534-02161,2,
  • Chenyu Sun1,2,
  • Bin Sun1,2,
  • Pengfei Li1,2,
  • Xinhua Ding  ORCID: orcid.org/0000-0002-6510-59923,
  • Qiao Guo  ORCID: orcid.org/0000-0003-1209-71481,2,4,
  • Jun Yuan  ORCID: orcid.org/0000-0002-8265-02395 &
  • …
  • Hangxian Lai  ORCID: orcid.org/0000-0001-7732-31561,2 

Nature Communications , Article number:  (2026) Cite this article

  • 3059 Accesses

  • 4 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical ecology
  • Microbiome
  • Plant ecology
  • Soil microbiology

Abstract

Rhizosphere microbes benefit plant growth and health. How plant-microbe interactions regulate fruit quality remains poorly understood. Here, we elucidate the multi-level modulation of vitamin accumulation in tomato by flavonoid-mediated crosstalk between host plants and rhizosphere microbes. SlMYB12-overexpressing plants with up-regulated flavonoid biosynthesis accumulate higher levels of vitamins C and B6 in fruits compared to wild-type plants grown in natural soil. Flavonoid-mediated improvement of fruit quality depends on the presence of soil microbiomes and relates to rhizosphere enrichment of key taxa (e.g. Lysobacter). Multi-omics analyses reveal that flavonoids attract Lysobacter soli by stimulating its twitching motility and spermidine biosynthesis, which in turn boosts vitamin accumulation in fruits across tomato cultivars and soil types. RpoN acts as a dual regulator in L. soli that is responsive to flavonoids, controlling bacterial motility and spermidine production. Our study provides insight into flavonoid-mediated rhizosphere signalling and underscores plant-microbiome orchestration for improved tomato fruit quality.

Similar content being viewed by others

Rhizosphere microbiomes derived from vermicompost alter gene expression and regulatory pathways in tomato (Solanum lycopersicum, L.)

Article Open access 12 September 2024

Disentangling the genetic basis of rhizosphere microbiome assembly in tomato

Article Open access 16 June 2022

Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease

Article Open access 26 July 2023

Data availability

Raw 16S rRNA gene amplicon sequencing and metagenomic data generated in this study have been deposited in the NCBI under BioProject PRJNA1303084 and PRJNA1182265, respectively. The genomic data for strains P18 generated in this study have been deposited in the NCBI under BioProject PRJNA1177803. The transcriptome data have been deposited in NCBI Sequence Read Archive database under BioProject PRJNA1182113 (bacteria) and PRJNA1182117 (tomato fruit). The flavonoid-targeted metabolomic and widely targeted metabolomic data have been deposited in the MetaboLights under MetaboLights accession MTBLS13507 and MTBLS13506, respectively. Source data are provided with a paper. Source data are provided with this paper.

References

  1. Sato, S. et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 7400 (2012).

    Google Scholar 

  2. Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

    Google Scholar 

  3. Slimestad, R. & Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89, 1255–1270 (2009).

    Google Scholar 

  4. Mooney, S., Leuendorf, J. E., Hendrickson, C. & Hellmann, H. Vitamin B6: a long known compound of surprising complexity. Molecules 14, 329–351 (2009).

    Google Scholar 

  5. Spinneker, A. et al. Vitamin B6 status, deficiency and its consequences-an overview. Nutrición Hospitalaria 22, 7–24 (2007).

    Google Scholar 

  6. Capanoglu, E., Beekwilder, J., Boyacioglu, D., De Vos, R. C. H. & Hall, R. D. The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Crit. Rev. Food Sci. Nutr. 50, 919–930 (2010).

    Google Scholar 

  7. Ansari, F. A., Ahmad, I. & Pichtel, J. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl. Soil. Ecol. 143, 45–54 (2019).

    Google Scholar 

  8. Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33, 197 (2017).

    Google Scholar 

  9. Chandran, H., Meena, M. & Swapnil, P. Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability 13, 10986 (2021).

    Google Scholar 

  10. Xie, Y., Wright, S., Shen, Y. & Du, L. Bioactive natural products from Lysobacter. Nat. Prod. Rep. 29, 1277–1287 (2012).

    Google Scholar 

  11. Vasilyeva, N. V. et al. Lytic peptidase L5 of Lysobacter sp. XL1 with broad antimicrobial spectrum. J. Mol. Microbiol. Biotechnol. 24, 59–66 (2014).

    Google Scholar 

  12. De Vries, F. T., Griffiths, R. I. & Knight, C. G. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Google Scholar 

  13. Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25–41 (2018).

    Google Scholar 

  14. Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).

    Google Scholar 

  15. Zhao, M. et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 44, 613–628 (2021).

    Google Scholar 

  16. Wang, L. et al. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 10, 233 (2022).

    Google Scholar 

  17. Yu, P. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 1–16 (2021).

    Google Scholar 

  18. Wu, J. D. et al. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nat. commun. 16, 1461 (2025).

    Google Scholar 

  19. He, D. et al. Flavonoid attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J. 16, 1427–1441 (2022).

    Google Scholar 

  20. Xu, F. Y. et al. Auxin-producing Pseudomonas recruited by root flavonoids increases rice rhizosheath formation through the bacterial histidine kinase under soil drying. Adv. Sci. 12, e00607 (2025).

    Google Scholar 

  21. Wang, S. et al. SlMYB12 regulates flavonol synthesis in three different cherry tomato varieties. Sci. Rep. 8, 1582 (2018).

    Google Scholar 

  22. Igarashi, K. & Kashiwagi, K. Modulation of cellular functions by polyamines. Nat. Rev. Mol. Cell Bio. 1, 440–448 (2000).

    Google Scholar 

  23. Cole, B. J. et al. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15, e2002860 (2017).

    Google Scholar 

  24. Wheatley, R. M. & Poole, P. S. Mechanisms of bacterial attachment to roots. FEMS Microbiol. Rev. 42, 448–461 (2018).

    Google Scholar 

  25. Hirsch, P. R., Miller, A. J. & Dennis, P. G. Molecular microbial ecology of the rhizosphere Ch. Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? New Jersey: Wiley Press; 229 (2013).

  26. Tian, T., Reverdy, A., She, Q., Sun, B. & Chai, Y. The role of rhizodeposits in shaping rhizomicrobiome. Environ. Microbiol. Rep. 12, 160–172 (2020).

    Google Scholar 

  27. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Google Scholar 

  28. Feng, H. et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant. Microbe . 31, 995–1005 (2018).

    Google Scholar 

  29. Tian, T. et al. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J. 9, 2723–2737 (2021).

    Google Scholar 

  30. Mahajan, N. C., Mrunalini, K. & Prasad, K. S. K. Soil quality indicators, building soil organic matter and microbial derived inputs to soil organic matter under conservation agriculture ecosystem: a review. J. Curr. Microbiol. Appl. Sci. 8, 1859–1879 (2019).

    Google Scholar 

  31. Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils 48, 489–499 (2012).

    Google Scholar 

  32. Bolanos-Vasquez, M. C. & Warner, D. Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. Mol. Plant. Microbe. 10, 339–346 (1997).

    Google Scholar 

  33. Begum, A. A., Leibovitch, S., Migner, P. & Zhang, F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J. Exp. Bot. 52, 1537–1543 (2001).

    Google Scholar 

  34. Gómez Expósito, R., Postma, J., Raaijmakers, J. M. & De Bruijn, I. Diversity and activity of Lysobacter species from disease suppressive soils. Front. Microbiol. 6, 1243 (2015).

    Google Scholar 

  35. Laborda, P., Ling, J., Chen, X. & Liu, F. ACC deaminase from Lysobacter gummosus OH17 can promote root growth in Oryza sativa nipponbare plants. J. Agric. Food Chem. 66, 3675–3682 (2018).

    Google Scholar 

  36. Ling, J. et al. LbDSF, the Lysobacter brunescens quorum-sensing system diffusible signaling factor, regulates anti-Xanthomonas XSAC biosynthesis, colony morphology, and surface motility. Front. Microbiol. 10, 1230–1230 (2019).

    Google Scholar 

  37. Chen, L. & Liu, Y. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 13, 92 (2024).

    Google Scholar 

  38. Liu, Y. et al. Root colonization by beneficial rhizobacteria. FEMS Microbiol. Rev. 48, fuad066 (2024).

    Google Scholar 

  39. Xia, J., Chen, J., Chen, Y., Qian, G. & Liu, F. Type IV pilus biogenesis genes and their roles in biofilm formation in the biological control agent Lysobacter enzymogenes OH11. Appl. Microbiol. Biotechnol. 102, 833–846 (2018).

    Google Scholar 

  40. Lin, L. et al. A non-flagellated biocontrol bacterium employs a PilZ-PilB complex to provoke twitching motility associated with its predation behavior. Phytopathol. Res. 2, 12 (2020).

    Google Scholar 

  41. Fulano, A. M., Shen, D., Kinoshita, M., Chou, S. & Qian, G. The homologous components of flagellar type III protein apparatus have acquired a novel function to control twitching motility in a non-flagellated biocontrol bacterium. Biomolecules 10, 733 (2020).

    Google Scholar 

  42. Wolucka, B. A. & Van Montagu, M. GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J. Biol. Chem. 278, 47483–47490 (2003).

    Google Scholar 

  43. Schulz, S. et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog. 11, e1004744 (2015).

    Google Scholar 

  44. Lloyd, M. G., Vossler, J. L., Nomura, C. T. & Moffat, J. F. Blocking RpoN reduces virulence of Pseudomonas aeruginosa isolated from cystic fibrosis patients and increases antibiotic sensitivity in a laboratory strain. Sci. Rep. 9, 6677 (2019).

    Google Scholar 

  45. Lundgren, B. R. et al. Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP. BMC Microbiol 21, 83 (2021).

    Google Scholar 

  46. Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    Google Scholar 

  47. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    Google Scholar 

  48. Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Google Scholar 

  49. Kumar, A., Tripti, Maleva, M., Bruno, L. B. & Rajkumar, M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere 276, 130038 (2021).

    Google Scholar 

  50. Mustafavi, S. H., Badi, H. N., Sekara, A. & Al, E. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol. Plant 40, 102 (2018).

    Google Scholar 

  51. Chen, D., Shao, Q., Yin, L., Younis, A. & Zheng, B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9, 1945 (2019).

    Google Scholar 

  52. Krysenko, S. & Wohlleben, W. Polyamine and ethanolamine metabolism in bacteria as an important component of nitrogen assimilation for survival and pathogenicity. Med. Sci. 10, 40 (2022).

    Google Scholar 

  53. Wheeler, G. L., Jones, M. A. & Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369 (1998).

    Google Scholar 

  54. Agius, F. et al. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21, 177–181 (2003).

    Google Scholar 

  55. Lorence, A., Chevone, B. I., Mendes, P. & Nessler, C. L. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134, 1200–1205 (2004).

    Google Scholar 

  56. Saito, K. & Matsuda, F. Metabolomics for functional analysis of plant secondary metabolites. Plant J. 61, 306–320 (2010).

    Google Scholar 

  57. Smirnoff, N. Ascorbic acid: physiology and metabolism. : Plant Ascorbic Acid 1, 23 (2000).

    Google Scholar 

  58. Dong, H. et al. Loss of the L-galactose pathway for ascorbic acid biosynthesis in plants. Nat. Plants 1, 15032 (2015).

    Google Scholar 

  59. Zhang, Y. et al. Characterization of a mutant deficient in vitamin B6 biosynthesis in Arabidopsis. J. Exp. Bot. 66, 1647–1660 (2015).

    Google Scholar 

  60. Yang, K. et al. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Mol. Plant 16, 1379–1395 (2023).

    Google Scholar 

  61. Wen, T. et al. Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease. Nat. Commun. 14, 4497–4497 (2023).

    Google Scholar 

  62. Liu, C. et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 100, 1421–1426 (2016).

    Google Scholar 

  63. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).

    Google Scholar 

  64. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Google Scholar 

  65. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2023).

  66. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Google Scholar 

  67. Jett, B. D., Hatter, K. L., Huycke, M. M. & Gilmore, M. S. Simplified agar plate method for quantifying viable bacteria. Bio. Tech. 23, 648–650 (1997).

    Google Scholar 

  68. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Google Scholar 

  69. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  70. Qian, G. et al. Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J. Microbiol. Biotechnol. 28, 549–557 (2012).

    Google Scholar 

  71. Davidson, M. S. & Summers, A. O. Wide-host-range plasmids function in the genus Thiobacillus. Appl. Environ. Microbiol. 46, 565–572 (1983).

    Google Scholar 

  72. Qian, G. et al. Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl. Environ. Microbiol. 79, 6604–6616 (2013).

    Google Scholar 

  73. Tao, L., Jackson, R. E. & Cheng, Q. Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab. Eng. 7, 10–17 (2005).

    Google Scholar 

  74. Rashid, M. H. & Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. P. Natl. Acad. Sci. Usa. 97, 4885–4890 (2000).

    Google Scholar 

  75. Barros, A. I. R. N. A., Silva, A. P., Goncalves, B. & Nunes, F. M. A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids. Anal. Bioanal. Chem. 396, 1863–1875 (2010).

    Google Scholar 

  76. Islam, M. A. et al. Validation of vitamin B5 (pantothenic acid) and B6 (pyridoxine, pyridoxal, and pyridoxamine) analyses in seafood. J. Food Compos. Anal. 109, 104518 (2022).

    Google Scholar 

  77. Ni, Y. et al. Spermidine ameliorates nonalcoholic steatohepatitis through thyroid hormone-responsive protein signaling and the gut microbiota-mediated metabolism of bile acids. J. Agric. Food Chem. 70, 6478–6492 (2022).

    Google Scholar 

  78. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  79. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner for RNA-Seq. Bioinformatics 31, 393–400 (2015).

    Google Scholar 

  80. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequence data. Bioinformatics 31, 166–169 (2015).

    Google Scholar 

  81. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2013).

    Google Scholar 

  82. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).

    Google Scholar 

  83. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. methods 12, 357–360 (2015).

    Google Scholar 

  84. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  85. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Google Scholar 

  86. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Google Scholar 

  87. Chen, W. et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769–1780 (2013).

    Google Scholar 

  88. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Google Scholar 

  89. Liu, P. X. et al. Distinct quality changes of asparagus during growth by widely targeted metabolomics analysis. J. Agric. Food Chem. 70, 15999–16009 (2022).

    Google Scholar 

  90. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  91. Liaw, A. & Wiener, M. Classification and regression by random forest. R. N. 2, 18–22 (2002).

    Google Scholar 

Download references

Acknowledgements

H.L. and Q.G. were supported by grants from the Special Project of Scientific and Technological Innovation of Xinjiang Research Institute of Arid Area Agriculture (XJHQNY-2025-6). Q.G. was supported by grants from the China National Tobacco Corporation Yunnan Branch Major Science and Technology Programme Special Project (2024530000241022) and the “Scientists + Engineers” Team Project of Xianyang (L2024-CXNL-KJRCT-DWJS-0005). H.L. was supported by grants from the Key Research and Development Programme of Shaanxi Province (S2024-YF-ZDXM-NY-0223; S2024-YF-ZDCXL-ZDLNY-0162).

Author information

Authors and Affiliations

  1. College of Natural Resources and Environment, Northwest A&F University, Yangling, China

    Wenjiang Fu, Chenyu Sun, Bin Sun, Pengfei Li, Qiao Guo & Hangxian Lai

  2. Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, China

    Wenjiang Fu, Chenyu Sun, Bin Sun, Pengfei Li, Qiao Guo & Hangxian Lai

  3. College of Plant Protection, Shandong Agricultural University, Taian, China

    Xinhua Ding

  4. State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China

    Qiao Guo

  5. Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China

    Jun Yuan

Authors
  1. Wenjiang Fu
    View author publications

    Search author on:PubMed Google Scholar

  2. Chenyu Sun
    View author publications

    Search author on:PubMed Google Scholar

  3. Bin Sun
    View author publications

    Search author on:PubMed Google Scholar

  4. Pengfei Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Xinhua Ding
    View author publications

    Search author on:PubMed Google Scholar

  6. Qiao Guo
    View author publications

    Search author on:PubMed Google Scholar

  7. Jun Yuan
    View author publications

    Search author on:PubMed Google Scholar

  8. Hangxian Lai
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.F. and C.S. designed the experiments. P.L. and W.F. collected and analysed the data. W.F. and B.S. performed the experiments. W.F. interpreted the results and draughted the manuscript. D.X. provided experiment materials. H.L., Q.G. and J.Y. revised the manuscript and provided critical suggestions. H.L. and Q.G. obtained funding and conceived the study. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Qiao Guo, Jun Yuan or Hangxian Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Mengcen Wang, who co-reviewed with Hongfu Li; Mohammadhossein Ravanbakhsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Sun, C., Sun, B. et al. Flavonoid-mediated bacterial spermidine biosynthesis enhances vitamin accumulation in tomato fruits. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68244-9

Download citation

  • Received: 04 December 2024

  • Accepted: 18 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68244-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Plant Microbiomes

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing