Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global profiling of arginine reactivity and ligandability in the human proteome

Subjects

Abstract

Despite the crucial biological functions of arginine, its reactivity and ligandability within the human proteome remain largely unexplored. Here we apply activity-based protein profiling (ABPP) with phenylglyoxal-based chemical probes to map arginine reactivity globally. Screening phenylglyoxal derivatives identified a probe with enhanced coverage and selectivity, enabling quantification of 4,606 arginine sites across human cell lines. Among these, critical residues regulate liquid–liquid phase separation. Arginine reactivity was further assessed by on-beads reductive dimethylation proteomics, revealing a subset of hyper-reactive sites. Competitive fragment screening using data-independent acquisition ABPP (DIA-ABPP) generated a ligandability map of arginine residues across 60 dicarbonyl compounds. This dataset revealed ligandable arginines that modulate protein activity, in particular protein–protein interactions, highlighting potential covalent drug targets. Together, this work provides a proteome-wide profile of arginine reactivity and ligandability, offering insights into the functional landscape of arginines and expanding the scope of covalent drug discovery to include arginine-targeting molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening of PG derivatives for arginine profiling in the human proteomes.
Fig. 2: Bioinformatics analysis of labelled arginine functions.
Fig. 3: Quantitative profiling of arginine reactivity in the human proteome.
Fig. 4: Arginine–π interaction mediated phase separation.
Fig. 5: A global map of glyoxal compounds–arginine reactivity in the human proteome.
Fig. 6: Perturbation of PPIs by arginine-targeting ligands.

Similar content being viewed by others

Data availability

The MS data generated in this study have been deposited to the ProteomeXchange Consortium via the iProX74 partner repository with the dataset identifier PXD056202 (Arginine_Profiling_MS dataset). Source data are provided with this paper.

Code availability

The Python code and the corresponding dataset have been deposited to Zenodo at https://doi.org/10.5281/zenodo.15493178 (ref. 75). Alternatively, it is available from the corresponding author upon request.

References

  1. Jin, Y., Jana, S., Abbasov, M. E. & Lin, H. Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments. Cell Chem. Biol. 32, 434–448.e9 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang, X. & Cravatt, B. F. Chemical proteomics–guided discovery of covalent ligands for cancer proteins. Annu. Rev. Cancer Biol. 8, 155–175 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Niphakis, M. J. & Cravatt, B. F. Ligand discovery by activity-based protein profiling. Cell Chem. Biol. 31, 1636–1651 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Offensperger, F. et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 384, eadk5864 (2024).

    Article  PubMed  CAS  Google Scholar 

  5. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shi, Y., Fu, L., Yang, J. & Carroll, K. S. Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting. Nat. Chem. 13, 1140–1150 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fu, L. et al. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat. Chem. Biol. 19, 1309–1319 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Qin, W. et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15, 983–991 (2019).

    Article  PubMed  CAS  Google Scholar 

  10. Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Abbasov, M. E. et al. A proteome-wide atlas of lysine-reactive chemistry. Nat. Chem. 13, 1081–1092 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hahm, H. S. et al. Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. Nat. Chem. Biol. 16, 150–159 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Sun, F., Suttapitugsakul, S. & Wu, R. An azo coupling-based chemoproteomic approach to systematically profile the tyrosine reactivity in the human proteome. Anal. Chem. 93, 10334–10342 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen, Y. et al. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat. Chem. 15, 1616–1625 (2023).

    Article  PubMed  CAS  Google Scholar 

  15. Lin, S. X. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bach, K., Beerkens, B. L. H., Zanon, P. R. A. & Hacker, S. M. Light-activatable, 2,5-disubstituted tetrazoles for the proteome-wide profiling of aspartates and glutamates in living bacteria. ACS Cent. Sci. 6, 546–554 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ma, N. et al. 2H-Azirine-based reagents for chemoselective bioconjugation at carboxyl residues inside live cells. J. Am. Chem. Soc. 142, 6051–6059 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Xie, X. et al. Oxidative cyclization reagents reveal tryptophan cation–π interactions. Nature 627, 680–687 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhai, Y. et al. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat. Chem. 16, 1546–1557 (2024).

    Article  PubMed  CAS  Google Scholar 

  20. Sharma, H. A. et al. Proteomic ligandability maps of phosphorus(V) stereoprobes identify covalent TLCD1 inhibitors. J. Am. Chem. Soc. 147, 15554–15566 (2025).

    Article  PubMed  CAS  Google Scholar 

  21. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, Q. et al. Quantitative chemoproteomics reveals dopamine’s protective modification of Tau. Nat. Chem. Biol. 21, 1341–1350 (2025).

    Article  PubMed  CAS  Google Scholar 

  23. Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

    Article  PubMed  Google Scholar 

  24. Hodges, A. J. et al. Histone sprocket arginine residues are important for gene expression, DNA repair and cell viability in Saccharomyces cerevisiae. Genetics 200, 795–806 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bogan, A. A. & Thorn, K. S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Bartlett, G. J., Porter, C. T., Borkakoti, N. & Thornton, J. M. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 324, 105–121 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Gupta, M. N. & Uversky, V. N. Biological importance of arginine: a comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int. J. Biol. Macromol. 257, 128646 (2024).

    Article  PubMed  CAS  Google Scholar 

  28. Fuhrmann, J., Clancy, K. W. & Thompson, P. R. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 115, 5413–5461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. Hellwig, M. & Henle, T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew. Chem. Int. Ed. 53, 10316–10329 (2014).

    Article  CAS  Google Scholar 

  32. Takahashi, K. The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem. 243, 6171–6179 (1968).

    Article  PubMed  CAS  Google Scholar 

  33. Dovgan, I. et al. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Org. Biomol. Chem. 16, 1305–1311 (2018).

    Article  PubMed  CAS  Google Scholar 

  34. Jones, A. X. et al. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat. Commun. 10, 3911 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lewallen, D. M. et al. Chemical proteomic platform to identify citrullinated proteins. ACS Chem. Biol. 10, 2520–2528 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bicker, K. L., Subramanian, V., Chumanevich, A. A., Hofseth, L. J. & Thompson, P. R. Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J. Am. Chem. Soc. 134, 17015–17018 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zanon, P. R. A. et al. Profiling the proteome-wide selectivity of diverse electrophiles. Nat. Chem. 17, 1712–1721 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang, Q. et al. Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method. Proc. Natl Acad. Sci. USA 119, e2205255119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu, Z., Wang, K. & Ye, M. Photoreactive probe-based strategy enables the specific identification of the transient substrates of methyltransferase at the proteome scale. Anal. Chem. 95, 12580–12585 (2023).

    Article  PubMed  CAS  Google Scholar 

  40. Shi, Y. et al. Enabling global analysis of protein citrullination via biotin thiol tag-assisted mass spectrometry. Anal. Chem. 94, 17895–17903 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, P. et al. Cell-active, arginine-targeting irreversible covalent inhibitors for non-kinases and kinases. Angew. Chem. Int. Ed. 64, e202422372 (2025).

    Article  CAS  Google Scholar 

  42. Zhang, Z., Morstein, J., Ecker, A. K., Guiley, K. Z. & Shokat, K. M. Chemoselective covalent modification of K-Ras(G12R) with a small molecule electrophile. J. Am. Chem. Soc. 144, 15916–15921 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Prosser, L., Emenike, B., Sihag, P., Shirke, R. & Raj, M. Chemical carbonylation of arginine in peptides and proteins. J. Am. Chem. Soc. 147, 10139–10150 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  46. Weerapana, E., Speers, A. E. & Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    Article  PubMed  CAS  Google Scholar 

  47. Chang, J. W., Lee, G., Coukos, J. S. & Moellering, R. E. Profiling reactive metabolites via chemical trapping and targeted mass spectrometry. Anal. Chem. 88, 6658–6661 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article  PubMed Central  Google Scholar 

  50. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Article  PubMed  CAS  Google Scholar 

  51. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Yang, F., Gao, J., Che, J., Jia, G. & Wang, C. A dimethyl-labeling-based strategy for site-specifically quantitative chemical proteomics. Anal. Chem. 90, 9576–9582 (2018).

    Article  PubMed  CAS  Google Scholar 

  53. You, K. et al. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res. 48, D354–D359 (2019).

    Article  PubMed Central  Google Scholar 

  54. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e6 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  58. Yang, F., Jia, G., Guo, J., Liu, Y. & Wang, C. Quantitative chemoproteomic profiling with data-independent acquisition-based mass spectrometry. J. Am. Chem. Soc. 144, 901–911 (2022).

    Article  PubMed  CAS  Google Scholar 

  59. Berkholz, D. S., Faber, H. R., Savvides, S. N. & Karplus, P. A. Catalytic cycle of human glutathione reductase near 1 Å resolution. J. Mol. Biol. 382, 371–384 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang, R. et al. Pleiotropic effects of a mitochondrion-targeted glutathione reductase inhibitor on restraining tumor cells. Eur. J. Med. Chem. 248, 115069 (2023).

    Article  PubMed  CAS  Google Scholar 

  61. Burger, N. et al. The human zinc-binding cysteine proteome. Cell 188, 832–850.e27 (2025).

    Article  PubMed  CAS  Google Scholar 

  62. Board, P. G. et al. S-(4-nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Anal. Biochem. 374, 25–30 (2008).

  63. Ramkumar, K. et al. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat. Commun. 7, 13084 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu, Y. et al. Proteome-wide ligand and target discovery by using strain-enabled cyclopropane electrophiles. J. Am. Chem. Soc. 146, 20823–20836 (2024).

    Article  PubMed  CAS  Google Scholar 

  65. Baltgalvis, K. A. et al. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 629, 435–442 (2024).

    Article  PubMed  CAS  Google Scholar 

  66. Uechi, H. et al. Small-molecule dissolution of stress granules by redox modulation benefits ALS models. Nat. Chem. Biol. 21, 1577–1588 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tanikawa, C. et al. Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep. 22, 1473–1483 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Hofweber, M. & Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  PubMed  CAS  Google Scholar 

  69. Communi, D., Lecocq, R. & Erneux, C. Arginine 343 and 350 are two active site residues involved in substrate binding by human type I D-myo-inositol 1,4,5-trisphosphate 5-phosphatase. J. Biol. Chem. 271, 11676–11683 (1996).

    Article  PubMed  CAS  Google Scholar 

  70. Chen, G. & Chen, X. Arginine residues in the active site of human phenol sulfotransferase (SULT1A1). J. Biol. Chem. 278, 36358–36364 (2003).

    Article  PubMed  CAS  Google Scholar 

  71. Yan, J., He, G., Yan, F., Zhang, J. & Zhang, G. The dicarbonylation of indoles via Friedel–Crafts reaction with dicarbonyl nitrile generated in situ and retro-cyanohydrination. RSC Adv. 6, 44029–44033 (2016).

    Article  CAS  Google Scholar 

  72. Hirapara, P. et al. CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation. Green Chem. 19, 5356–5360 (2017).

    Article  CAS  Google Scholar 

  73. Li, J. et al. ACR-based probe for the quantitative profiling of histidine reactivity in the human proteome. J. Am. Chem. Soc. 145, 5252–5260 (2023).

    Article  PubMed  CAS  Google Scholar 

  74. Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    Article  PubMed  Google Scholar 

  75. Wang, Y. Global profiling of arginine reactivity and ligandability in the human proteome. Zenodo https://doi.org/10.5281/zenodo.15493178 (2025).

Download references

Acknowledgements

We are grateful for financial support of this work from Shenzhen Bay Laboratory Startup (21240041 to G.L.), Guangdong Special Support Plan for Outstanding Young Talents (2023TQ07A238 to G.L.) and the Natural Science Foundation of Guangdong Province (2023A1515111118 to Y.W.). We thank the Multi-omics Mass Spectrometry Core Facility at the Bio-Tech Center of Shenzhen Medical Academy of Research and Translation (SMART) for their technical support. We thank Z. Li (Jinan University) for providing the S-(4-nitrophenacyl)glutathione (4-NPG) substrate. We thank Y. Jiang, L. Fu, W. Xiao, Y. Chen, T. Guo and X. Guo for helpful discussions. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Contributions

G.L. conceived the study and supervised the research. Y.W., T.H., Y.Z., X.H., B.Y. and G.L. designed and analysed the biological experiments. L.Z., C.X. and G.L. designed and synthesized the chemical compounds. X.Y., Y.L. and S.X. developed the Python and R code for data processing, bioinformatics and chemoinformatics analyses. Y.W. and G.L. wrote the paper with input from all authors.

Corresponding author

Correspondence to Gang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Specificity analysis of the probe 1 and 2.

a) Distribution of peptide modifications for probe 1 and 2, considering localized peptide spectrum matches (PSMs) exceeding 80. b) Proposed structures of the probe 1-derived adducts corresponding to the mass shifts of +318.1117 Da and its oxidized form (+334.1066 Da). c) Proposed structures of the probe 2-derived adducts corresponding to the mass shifts of +276.0997 Da and its oxidized product (+292.0961 Da). d) Probe selectivity analysis using an open-search method. e) Selectivity of probe 1 and 2 determined through mass-offset search using the mass shifts in (a). f) Number of modification sites identified by a closed-search using the expected differential masses for each probe.

Source data

Extended Data Fig. 2 Strategies to enhance arginine labeling sites.

a) Identification of arginine labeling sites in membrane and soluble fractions using probe 1, with two biological replicates. b) Comparison of arginine labeling sites using an alternative workflow where trypsin digestion precedes enrichment, versus the traditional approach where enrichment precedes digestion. Two biological replicates were performed. c) Overlap of the arginine sites labelled in the human proteome across two biological replicates. d) Proposed chemical structure of the PhGO-alkyne derived adducts. e) Comparison of arginine-modified sites identified by probe 1 and PhGO-alkyne in HeLa cell lysates. f) Overlap of arginine sites labelled by probe 1 and PhGO-alkyne across the human proteome.

Source data

Extended Data Fig. 3 Live cell arginine labeling by probe 1.

a) Optimization of probe 1 concentration and incubation time for live-cell labeling. b) Number of arginine-modified sites identified in live cells via closed-search using the expected mass shift of probe 1. c) Cytotoxicity of probe 1 in HeLa cells measured by CellTiter-Glo assay. d) Intracellular concentration of probe 1 in HeLa cells determined by targeted LC–MS/MS. Data are shown as mean ± SD from three biologically independent replicates.

Source data

Extended Data Fig. 4 Quantitative profiling of arginine reactivity in the human proteome.

a) Waterfall plot of log2(R10:1) values from two biological replicates, representing the probe-modified arginine sites used to quantify arginine reactivity across the proteome. b-d) Validation of labeling for proteins containing hyper-reactive arginine residues (GSHR R81, RIR1 R284, and FSCN1 R217). Recombinant wild-type (WT) proteins and corresponding arginine-to-lysine (R-to-K) mutants were expressed in HEK293T proteomes, labelled with probe 1, and analyzed via in-gel fluorescence. e) Western blots were used to confirm protein expressions for LLPS assays. All data are representative of two biologically independent experiments (n = 2).

Source data

Extended Data Fig. 5 Arginine-π interaction mediated phase separation.

a, c, e) Fluorescence imaging comparing wild-type and mutant cells, confirming the functional role of R269 in UBQL2 (a), R313 in NONO (c) and H90 in SFPQ (e) for promoting phase separation. Scale bar, 5 μm. n = 3 biological independent replicates. b, d, f) Quantification of puncta number and size in wild-type and mutant cells (UBQL2 R269A in b, NONO R313A in d, and SFPQ H90A in f) after arsenite treatment. Boxes represent the interquartile range (25th-75th percentiles), and center lines denote the median. Statistical significance was assessed using unpaired two-tailed Student’s t-tests; P values are indicated.

Source data

Extended Data Fig. 6 Chemical structures of glyoxal compounds used in this study.

Glyoxal compounds are categorized into three structural types: aryl-disubstituted glyoxals (Type 1), alkyl-disubstituted glyoxals (Type 2), and monosubstituted glyoxals (Type 3).

Extended Data Fig. 7 Validation of liganded arginines in cell lysate.

a) Representative MS1 extracted ion chromatograms (XIC) showing decreased probe 1-labelled peptide signal upon competition with CP 1 for KAD1. Average RDMSO/CP values, calculated from biological duplicates, are displayed below the XIC. b) Western blot validation of liganded arginines in HEK293T cell lysates expressing wild-type or arginine-to-alanine mutant KAD1, showing selective blockade of probe 1 labeling by CP 1. c) Structural model of KAD1 (PDB: 2C95) highlighting the liganded arginine residue. d) Bar plots illustrating the effects of CP 1, R81A and R81W mutation on the redox-dependent enzymatic activities of GSHR. Data are shown as mean ± SD from at least three biologically independent replicates.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–46 and Table 1.

Reporting Summary

Supplementary Data

Statistical source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Unprocessed western blots and gels pdf and statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Unprocessed western blots and gels pdf and statistical source data for Fig. 5.

Source Data Fig. 6

Unprocessed western blots and gels pdf and statistical source data for Fig. 6.

Source Data Extended Data Fig. 1

Statistical source data for Extended Fig. 1.

Source Data Extended Data Fig. 2

Statistical source data for Extended Fig. 2.

Source Data Extended Data Fig. 3

Unprocessed western blots and gels pdf and statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Unprocessed western blots and gels pdf and statistical source data or Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Statistical source data for Extended Fig. 5.

Source Data Extended Data Fig. 7

Unprocessed western blots and gels pdf and statistical source data for Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, T., Zhu, L. et al. Global profiling of arginine reactivity and ligandability in the human proteome. Nat. Chem. (2026). https://doi.org/10.1038/s41557-025-02012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41557-025-02012-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research