Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plug-in strategy for resistance engineering inspired by potato NLRome

Abstract

Potato late blight, which is caused by Phytophthora infestans and was responsible for the Irish potato famine, remains a major threat to global food security1. Most late-blight resistance (R) genes encode nucleotide-binding leucine-rich repeat proteins (NLRs), but many have been overcome by the rapid evolution of P. infestans2. Deploying R genes through hybrid potato breeding3,4,5,6,7 offers a promising solution to manage late blight. Here we construct a section-wide NLRome comprising 39,211 NLR genes from 31 wild and 21 cultivated potato genomes, representing Solanum section Petota, the tuber-bearing clade. This includes newly sequenced genomes of seven wild species with strong resistance to late blight. Phylogenomic analyses reveal asymmetric patterns of evolution that distinguish sensor and helper NLRs. Mining of the NLRome enabled us to clone Rpi-cph1, a homologue of which has previously been identified only in American black nightshade, and Rpi-cjm1, a Toll/interleukin-1 receptor (TIR) domain-containing NLR against late blight. We show that non-canonical NLR integrated domains are widespread in the NLRome. Tracing their evolutionary trajectory enabled us to identify Rpi-brk1, an R gene that perceives a P. infestans effector through its heavy-metal-associated (HMA) domain. We find that incorporating the HMA domain into the potato NLR R1 broadens its resistance spectrum, suggesting that a domain ‘plug-in’ strategy could be used to engineer disease resistance. These findings provide a paradigm for R-gene discovery through comparative and evolutionary genomics, and a strategy for R-gene engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Section-wide NLRome of Petota.
Fig. 2: Identification and functional characterization of Rpi-cph1.
Fig. 3: Identification and functional characterization of Rpi-cjm1.
Fig. 4: Rpi-brk1 is an HMA-domain-containing NLR that confers resistance to P. infestans.
Fig. 5: Plug-in strategy for engineering the potato R1 resistance gene.

Similar content being viewed by others

Data availability

All PacBio HiFi sequences and transcriptome data used in this study have been deposited at the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject accession number PRJNA831581. Genome assemblies of the seven potato accessions have been deposited in the NCBI GenBank database under the accession number PRJNA831581. Genome assemblies and annotations for the seven potato accessions are available at GitHub (https://github.com/HongboDoll/PotatoNLRome/releases/tag/v1.2.1). NLR annotations for the 52 potato accessions are available at GitHub (https://github.com/HongboDoll/PotatoNLRome/releases/tag/v1.0). The genotypes of the 50 accessions used for GWAS are available at GitHub (https://github.com/HongboDoll/PotatoNLRome/releases/tag/v1.3). Previously released potato genome assemblies were downloaded from the Pan-Potato Database (http://solomics.agis.org.cn/potato/ftp/genome/) and Spud DB (http://spuddb.uga.edu/dm_v6_1_download.shtml). Publicly available potato transcriptomic data were downloaded from NCBI with BioProject accession number PRJNA754534. The embryophyta_odb10 database is available at https://busco-data.ezlab.org/v4/data/lineages/. The sequences of cloned R genes have been deposited in the NCBI GenBank database (Rpi-cjm1, BankIt2946483: PV474667; Rpi-cph1.1, BankIt2946490: PV474668; Rpi-cph1.2, BankIt2946493: PV474669; Rpi-brk1, BankIt2946498: PV474670). Source data are provided with this paper.

Code availability

All custom scripts used in this study are available at GitHub (https://github.com/HongboDoll/PotatoNLRome) and Zenodo (https://doi.org/10.5281/zenodo.14211048) (ref. 100).

References

  1. Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385–402 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McDonald, B. A. & Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Plant Pathol. 40, 349–379 (2002).

    CAS  Google Scholar 

  3. Lindhout, P., et al. Towards F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).

    Article  Google Scholar 

  4. Li, Y., Li, G., Li, C., Qu, D. & Huang, S. Prospects of diploid hybrid breeding in potato. Chinese Potato J. 27, 96–99 (2013).

    CAS  Google Scholar 

  5. Stokstad, E. The new potato. Science 363, 574–577 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).

    Article  CAS  Google Scholar 

  8. Dong, S. & Zhou, S. Potato late blight caused by Phytophthora infestans: from molecular interactions to integrated management strategies. J. Integr. Agric. 21, 3456–3466 (2022).

    Article  CAS  Google Scholar 

  9. Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vleeshouwers, V. G. A. A. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Paluchowska, P., Śliwka, J. & Yin, Z. Late blight resistance genes in potato breeding. Planta 255, 127 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ballvora, A. et al. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J. 30, 361–371 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Lokossou, A. A. et al. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol. Plant Microbe Interact. 22, 630–641 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Huang, S. et al. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 42, 251–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Baggs, E., Dagdas, G. & Krasileva, K. V. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr. Opin. Plant Biol. 38, 59–67 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Monteiro, F. & Nishimura, M. T. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 56, 243–267 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. Adachi, H., Derevnina, L. & Kamoun, S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50, 121–131 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Tamborski, J. & Krasileva, K. V. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71, 355–378 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kuang, H., Woo, S.-S., Meyers, B. C., Nevo, E. & Michelmore, R. W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16, 2870–2894 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34, 656–660 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Witek, K. et al. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nat. Plants 7, 198–208 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  26. Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Kim, S. et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol. 18, 210 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seong, K., Seo, E., Witek, K., Li, M. & Staskawicz, B. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. 227, 1530–1543 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Shang, L. et al. A super pan-genomic landscape of rice. Cell Res. 32, 878–896 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195 (2011).

    Article  Google Scholar 

  33. Pham, G. M. et al. Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 9, giaa100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, X. et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol. Plant 16, 314–317 (2023).

    Article  PubMed  CAS  Google Scholar 

  35. Tang, D. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 606, 535–541 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  36. Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. & Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 80, 283–383 (2014).

    Article  Google Scholar 

  37. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Kourelis, J., Sakai, T., Adachi, H. & Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol. 19, e3001124 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lee, H.-Y. et al. Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants. New Phytol. 229, 532–547 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Adachi, H. et al. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genet. 19, e1010500 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Huang, J. et al. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol. Plant 13, 1470–1484 (2020).

    Article  PubMed  CAS  Google Scholar 

  43. Izarra, M. & Lindqvist-Kreuze, H. Expression of RXLR effectors in the EC-1 clonal lineage of Phytophthora infestans in Peru. Rev. Peruana Biol. 23, 293–299 (2016).

    Article  Google Scholar 

  44. Zheng, X. et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog. 10, e1004057 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oliva, R. F. et al. A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence. Mol. Plant Microbe Interact. 28, 901–912 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Du, Y. et al. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytol. 229, 501–515 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, S. et al. An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica 202, 219–234 (2015).

    Article  Google Scholar 

  48. Xiao, Y. et al. Activation and inhibition mechanisms of a plant helper NLR. Nature 639, 438–446 (2025).

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Ortiz, R. & Ehlenfeldt, M. K. The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60, 105–113 (1992).

    Article  Google Scholar 

  50. Shao, W. et al. Development of an NLR-ID toolkit and identification of novel disease-resistance genes in soybean. Plants 13, 668 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nishimura, M. T., Monteiro, F. & Dangl, J. L. Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets. Cell 161, 957–960 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Wu, Y. et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186, 2313–2328 (2023).

    Article  PubMed  CAS  Google Scholar 

  53. Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jansky, S. Overcoming hybridization barriers in potato. Plant Breed. 125, 1–12 (2006).

    Article  Google Scholar 

  56. Ramon, M. & Hanneman, R. E. Introgression of resistance to late blight (Phytophthora infestans) from Solanum pinnatisectum into S. tuberosum using embryo rescue and double pollination. Euphytica 127, 421–435 (2002).

    Article  CAS  Google Scholar 

  57. Mao, Y., Botella, J. R., Liu, Y. & Zhu, J.-K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ahn, H.-K. et al. Effector‐dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi‐amr3 and Rpi‐amr1. EMBO J. 42, e111484 (2023).

  59. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).

    Article  PubMed  CAS  Google Scholar 

  67. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Article  Google Scholar 

  69. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. The Tomato Genome Sequencing Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

    Article  ADS  Google Scholar 

  71. Zhou, Q. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 52, 1018–1023 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    Article  PubMed  CAS  Google Scholar 

  75. Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852–860 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Steuernagel, B. et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468–482 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  78. Osuna-Cruz, C. M. et al. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 46, D1197–D1201 (2018).

    Article  PubMed  CAS  Google Scholar 

  79. van Wersch, S. & Li, X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 24, 688–699 (2019).

    Article  PubMed  Google Scholar 

  80. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhang, Z. et al. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 419, 779–781 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  84. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhao, Y. et al. PanGP: a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics 30, 1297–1299 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sarris, P. F., Cevik, V., Dagdas, G., Jones, J. D. G. & Krasileva, K. V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen, Y. et al. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694–1708 (2020).

    Article  PubMed  CAS  Google Scholar 

  95. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Li, M. X., Yeung, J. M., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).

    Article  PubMed  CAS  Google Scholar 

  97. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, L. et al. A modified Agrobacterium-mediated transformation for two oomycete pathogens. PLoS Pathog. 19, e1011346 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  100. Li, H. Custom codes in the potato NLRome paper. Zenodo https://doi.org/10.5281/zenodo.14211048 (2024).

Download references

Acknowledgements

We thank S. Kamoun, J. D. G. Jones, Y. Wang, C. Zhang, Y. Zhang, J. Chen, Z. Shao, S. Li, L. Kong, R. van der Hoorn, I. Hein, K. Sohn, P. Birch, H. Wang, J. Huang, D. Yan and Y. Yang for project discussions and critical comments; T. Qi for providing N. benthamiana knockout lines; X. Liu, T. Wang and Q. Zhu for assistance with enzymatic analysis of Rpi-cjm1 and BN-PAGE experiments; Q. Fu, F. Zhang, X. Zhao and all other members of the S.D. and S.H. laboratories for assistance during this work; H. Luo for assistance with protein purification; and the AGIS CAAS-YNNU Joint Academy of Potato Sciences for assisting with greenhouse work. This work was supported by the National Natural Science Foundation of China (32488302 and 32130088), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030004), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202101 and CAAS-ZDRW202404), the National Key Research and Development Program of China (2019YFA0906200 and 2019YFE0120500), the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District (RC201901-05), Shenzhen Outstanding Talents Training Fund, the Shenzhen Science and Technology Program (KQTD2016113010482651), the Natural Science Foundation of Shandong Province (ZR2025QC1405), Taishan Scholar Foundation of the People’s Government of Shandong Province (ts202507142) and Young Talent of Lifting Engineering for Science and Technology in Shandong, China (SDAST2024QTA030).

Author information

Authors and Affiliations

Authors

Contributions

S.H. and S.D. conceived and designed the project. L. Wang, Y.K., Yuying Li, H. Liu, Yajie Li and J.C. performed experiments. H. Li., L. Wang and P.Z. performed bioinformatic analyses. P.W., L. Wang and Yuying Li contributed to greenhouse work. H. Li., L. Wang, S.D. and S.H. wrote the manuscript. S.H., S.D., S.P.D.-K., L. Wan and S.Z. revised the manuscript. S.H. and S.D. coordinated the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Suomeng Dong or Sanwen Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Doil Choi, Zuhua He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Overview of NLRs in Petota.

a, Phylogenetic relationship among the 52 wild and cultivated potato accessions and one tomato. Species names marked using asterisks denote the seven wild potatoes whose genomes are sequenced and assembled in this study. S. stenotomum, S. tuberosum Group Stenotomum; S. phrueja, S. tuberosum Group Phrueja. b, NLR copy number in potato. CNL: CC-NB-LRR, TNL (TIR-NLR): TIR-NB-LRR, NL: NB-LRR, RNL: RPW8-NB-LRR. c, Correlation between assembled monoploid genome size and number of predicted NLRs. The linear regression line is represented in blue. The 95% confidence interval is illustrated using grey-shaded regions. A two-tailed Pearson’s correlation test was used to calculate the correlation coefficient and P value. d, Violin plot shows the number of CNL, TNL, NL, and RNL in the 52 potato accessions. There are 52 samples in each category. The upper and lower dotted lines denote 75% and 25% quartiles, and the central dotted line indicates the median. The density curves show the data distribution.

Source Data

Extended Data Fig. 2 Characterization of type I and type II NLRs.

a, Phylogenetic relationships among type I and type II NLR clades. NLR clades whose mean branch length relative to their leaves is less than 1 are collapsed, marked using triangles in the phylogeny. b, Number of type I NLRs clades sister to type II or type I NLR clades. c, Number of previously reported sensor and helper NLRs belonging to Type I and Type II NLR clades. d, Proportions of type I and type II NLRs distributed in NLR gene clusters. e, Number of previously reported sensors, NLRs, which recognize pathogen effectors from five types of pathogens, are distributed in type I and type II NLR clades. f, Evolutionary features of type I and type II NLRs, using NRC4, R1 (type I NLRs) and NRC0, NRCx, NRC1, NRC2, NRC3, Prf (type II NLRs) as examples. Bootstrap values > 75 are displayed for the corresponding nodes.

Source Data

Extended Data Fig. 3 Rpi-cph1.1 and Rpi-cph1.2 confer resistance to P. infestans.

a, Phylogenetic relationships among Rpi-cph1, Rpi-amr3 and Rpi-amr3 homologues in Clade006. The phylogeny was constructed using alignments of amino acid sequences from the NB-ARC domain. ZAR1 was used as an outgroup. b, Two alleles of Rpi-cph1 conferred resistance against P. infestans JH19 when transiently expressed in N. benthamiana leaves. Late-blight resistance was not observed in two Rpi-amr3 homologues in S. hintonii and S. cajamarquense. Images were taken 5 days post-agro-infiltration. Scale bar = 1.5 cm. c, Western blot analysis of tested Rpi-amr3 homologues with c-terminus 10×myc tag. d, Resistance of Rpi-cph1.1 and Rpi-cph1.2 relied on NRC helpers in N. benthamiana. Images were taken 5 days post-agro-infiltration and inoculated with zoospore suspension of the P. infestans isolate JH19. Scale bar = 1 cm. e, Three independent transgenic potato lines of the Rpi-cph1.2 (#7, #16, #22) allele showed resistance against the P. infestans isolate 88069. Images were taken 5 days post-zoospore inoculation. Scale bar = 1.5 cm. f,g, Rpi-cph1.1 (#10, #13, #17) (f) and Rpi-cph1.2 (#7, #16, #22) (g) transgenic potato lines exhibited high resistance against 5 selected P. infestans isolates. WT, wild type. All transgenic potato lines were generated in the biological background of S. tuberosum cv. Désirée. h, Self-activation induced by two MHD mutants of Rpi-cph1.1 and Rpi-cph1.2 required native NRC helpers in potato. MHD mutants and NRC helpers from S. cardiophyllum were co-expressed in 4-week-old N. benthamiana leaves by agro-infiltration in the same final concentration (OD600 = 0.3). Sc, S. cardiophyllum. The numbers on the right bottom of the photographs indicate the number of leaves showing HR cell death out of the total number of leaves infiltrated. i, Rpi-cph1.1 and Rpi-cph1.2 required native NRC helpers for sensing AVRamr3 in N. benthamiana. Rpi-cph1.1 and Rpi-cph1.2 were co-expressed with AVRamr3 and the selected NRC helpers. Sc, S. cardiophyllum. St, S. tuberosum. Nb, N. benthamiana. All used genes were driven by the CaMV 35S promoter. Images were taken 5 days post-agro-infiltration. The numbers on the right bottom of the photographs indicate the number of leaves showing HR cell death out of the total number of leaves infiltrated. j, Western blot analysis of NRC helpers from S. cardiophyllum (ScNRC2, ScNRC3, ScNRC4), from S. tuberosum cv. Désirée (StNRC4) and from N. benthamiana (NbNRC4) with c-terminus 10×myc tag. Data in b,d,fh are presented as mean + s.d. Different lower-case letters indicate significant differences among treatments (P ≤ 0.01, one-way ANOVA–Tukey’s HSD test, n  =  9 independent experiments in b, n  =  12 independent experiments in d, n  =  9 independent experiments in fh, detailed P values between each two comparisons are provided in the Source Data file). The experiments in c,j were performed three times independently with similar results. For gel source data, see Source Data Extended Data Fig. 3.

Source Data

Extended Data Fig. 4 Transient expression of Rpi-cjm1 in N. benthamiana confers resistance to P. infestans.

a, Transient expression of CaMV 35S-driven Rpi-cjm1 in N. benthamiana leaves conferred resistance to the P. infestans isolate JH19. Data are presented as mean + s.d. The three asterisks indicate significant differences between infected area in leaves expressed Rpi-cjm1 or gfp control (P = 0.00000016, Student’s t-test, n  =  10 independent experiments). Scale bar =1.5 cm. b, Rpi-cjm1 induced HR cell death in N. benthamiana leaves when co-expressed with the P. infestans effector PITG_04085. c, HR symptoms when co-expressing different NLR with AVR proteins in wild-type (WT) and nrc2/3-KO, nrc4-KO, nrc2/3/4-KO, eds1-KO, nrg1-KO and adr1-KO N. benthamiana plants. KO, knockout. The numbers on the bottom right of the photographs indicate the number of HR symptom sites and the number of experiments. d, Resistance conferred by Rpi-cjm1 against P. infestans required NbEDS1 and NbNRG1. Images were taken 5 days post-agro-infiltration and inoculated with zoospore suspension of the P. infestans isolate JH19. Scale bar = 1 cm. Data are presented as mean ± s.d. Different lower-case letters indicate significant differences among treatments (P ≤ 0.01, one-way ANOVA–Tukey’s HSD test, n  =  9 independent experiments, detailed P values between each two comparisons are provided in the Source Data file).

Source Data

Extended Data Fig. 5 Diversity and evolution of NLR IDs in Petota.

a, Number of distinct IDs in the four phylogenetic groups of Petota. The sample sizes are 6, 20, 5, and 21, respectively. P value = 0.002291 in Kruskal–Wallis non-parametric (two-tailed) test. Fisher’s least significant difference was used for multiple comparisons. CND, S. candolleanum. b, The top 15 most prevalent IDs in the NLRome. c, Phylogenetic relationships among representative IDs and NLRs in the S. cardiophyllum genome. The phylogeny was constructed based on the alignment of NB-ARC domain amino acid sequences. Branches that do not contain NLRs with IDs are collapsed. IDs with a presence frequency ≥ 10 are indicated by text. d, Proportions of IDs present exclusively in NLRs and those also found in other non-NLR genes. e, Ka/Ks values of pairs of IDs present in NLR and non-NLR genes. f, Distribution of Tajima’s D values. NLR-ID refers to IDs present in NLRs. Non-NLR-ID refers to IDs present in non-NLR genes. For e,f, the number of samples in each category is 52. Grey lines connect values of the same ID in NLRs and non-NLR genes. Red lines highlight the HMA domain. In a,e,f, the upper and lower edges of boxes represent the 75th and 25th percentiles, respectively, and the central line indicates the median. The whiskers extend to the minimum and maximum data points. * P < 0.05 and *** P < 0.001 in the two-tailed Wilcoxon rank sum test. g, Distribution of NLR-HMA, total NLRs and non-NLR HMA genes across 94 Solanaceae species. Branch length indicates divergence time (million years ago) between species. NLR-HMA refers to NLRs with HMA domains.

Source Data

Extended Data Fig. 6 IDs in wild and cultivated potato.

a, Intersection of identified IDs in species from the four phylogenetic taxa of Petota. CND is the proposed progenitor of cultivated potatoes Solanum candolleanum. b, Phylogenetic relationships among NLRs carrying the HMA domain (NLR-HMA) and the R1 resistance gene. The phylogeny was constructed based on the alignment of NB-ARC domain amino acid sequences.

Source Data

Extended Data Fig. 7 Phylogenetic relationships among NLRs with HMA in Solanaceae.

The phylogeny was constructed using alignments of amino acid sequences from the NB-ARC domain.

Source Data

Extended Data Fig. 8 Phylogenetic analyses of HMA-containing genes in Solanaceae species.

a, Phylogenetic relationships across 3,521 genes carrying HMA domains in 42 Solanaceae species. The NLR-HMA clade is depicted using purple lines. b, A zoom-in view of cladogram of the NLR-HMA clade and its sister clade. Domain architecture for each clade is also shown. In a,b, the phylogeny was constructed using alignments of amino acid sequences from the HMA domain.

Source Data

Extended Data Fig. 9 Genomic distribution of NLR-HMA and related genes.

a, Distribution of NLRs in the R1 gene cluster and NLR-HMA in the potato DM reference genome, with a window length of 500 kb. b, Genomic coordinates of genes surrounding the R1 gene cluster in 8 wild and cultivated potato species and 2 Solanum wild species.

Source Data

Extended Data Fig. 10 Protein complex of HMAbrk1 and AVRbrk1.

a, NRC dependency analysis of Rpi-brk1. HR index data was recorded 5 days post-agro-infiltration. b, NRC dependency analysis of Rpi-brk1. Images were taken 5 days post-zoospore inoculation of P. infestans isolate JH19. Scale bar =1 cm. c, Prediction of protein complex of HMAbrk1 and AVRbrk1. The protein complex structures were generated using ClusPro and visualized with PyMOL. d, Screening of key amino acid residues that regulate the interaction of the HMAbrk1-AVRbrk1 protein complex using split-luciferase assay. D1124 was used as a control. e, Three independent transgenic potato lines expressing Rpi-brk1 (#1, #3 and #9), but not Rpi-brk1-m7 mutant (#2, #6 and #11), conferred resistance against five P. infestans isolates. Images were taken 5 days post-zoospore inoculation. f, NRC dependency analysis of R1-HMAbrk1 and R1-HMAbrk1-m7. Resistant gene R1 fused with HMAbrk1 or derivate mutant HMAbrk1-m7 were co-expressed with AVRbrk1 or AVR1 in wild-type N. benthamiana or nrc2/3, nrc4, nrc2/3/4 knockout mutants. HR index data was recorded 5 days post-agro-infiltration. Data in a,b,e,f are presented as mean + s.d. Different lower-case letters indicate significant differences among treatments (P ≤ 0.01, one-way ANOVA–Tukey’s HSD test, n  =  12 independent experiments in a,b,e,f, detailed P values between each two comparisons are provided in the Source Data file).

Source Data

Extended Data Table 1 Summary of the 52 potato genomes used in this study

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Discussion, Figs. 1–16 and references.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–19.

Peer Review File

Source Data Supplementary Figs. 8, 10, 13, 14 and 16

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, H., Ke, Y. et al. Plug-in strategy for resistance engineering inspired by potato NLRome. Nature 649, 396–405 (2026). https://doi.org/10.1038/s41586-025-09678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09678-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing