Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid evolution of a highly efficient RNA polymerase by homologous recombination

Abstract

Engineering DNA polymerases to efficiently synthesize artificial or noncognate nucleic acids remains an essential challenge in synthetic biology. Here we describe an evolutionary campaign designed to convert a family of highly selective DNA polymerases into an unnatural homolog with strong RNA synthesis activity. Starting from a homologous recombination library, a short evolutionary path was achieved using a single-cell droplet-based microfluidic selection strategy to produce C28, a newly engineered polymerase that can synthesize RNA with a rate of ~3 nt s−1 and of >99% fidelity. C28 is capable of long-range RNA synthesis, reverse transcription and chimeric DNA–RNA amplification using the PCR. Despite strong discrimination against other genetic systems, C28 readily accepts several 2′F and base-modified RNA analogs. Together, these findings highlight the power of directed evolution as an approach for reprogramming DNA polymerases with activities that could help drive future applications in biotechnology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Library generation and selection strategy.
Fig. 2: Evolution of a DNA-dependent RNA polymerase.
Fig. 3: Functional analysis of RNA polymerase C28.
Fig. 4: Fidelity and template composition requirements of RNA polymerase C28.
Fig. 5: Modified RNA synthesis by RNA polymerase C28.
Fig. 6: Crystallographic analysis of the engineered C28 RNA polymerase.

Similar content being viewed by others

Data availability

The atomic coordinates and structure factors for the crystal structure of C28 have been deposited with the Research Collaboratory for Structural Bioinformatics (PDB ID: 9MYE). Other data are available in the main text and Supplementary Information section. Source data are provided with this paper.

References

  1. Chim, N., Meza, R. A., Trinh, A. M., Yang, K. & Chaput, J. C. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat. Commun. 12, 2641 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391, 251–258 (1998).

    Article  PubMed  Google Scholar 

  3. Brautigam, C. A. & Steitz, T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8, 54–63 (1998).

    Article  PubMed  Google Scholar 

  4. Johnson, K. A. Role of induced fit in enzyme specificity: a molecular forward/reverse switch. J. Biol. Chem. 283, 26297–26301 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu, E. Y. & Beese, L. S. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an ‘ajar’ intermediate conformation in the nucleotide selection mechanism. J. Biol. Chem. 286, 19758–19767 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berezhna, S. Y., Gill, J. P., Lamichhane, R. & Millar, D. P. Single-molecule Forster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J. Am. Chem. Soc. 134, 11261–11268 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article  PubMed  Google Scholar 

  8. Kool, E. T. Active site tightness and substrate fit in DNA replication. Annu. Rev. Biochem. 71, 191–219 (2002).

    Article  PubMed  Google Scholar 

  9. Loakes, D. & Holliger, P. Polymerase engineering: towards the encoded synthesis of unnatural polymers. Chem. Commun. (Camb.) 27, 4619–4631 (2009).

    Article  Google Scholar 

  10. Chen, T. & Romesberg, F. E. Directed polymerase evolution. FEBS Lett. 588, 219–229 (2014).

    Article  PubMed  Google Scholar 

  11. Nikoomanzar, A., Chim, N., Yik, E. J. & Chaput, J. C. Engineering polymerases for applications in synthetic biology. Q. Rev. Biophys. 53, e8 (2020).

    Article  PubMed  Google Scholar 

  12. Astatke, M., Ng, K., Grindley, N. D. F. & Joyce, C. M. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl Acad. Sci. USA 95, 3402–3407 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bonnin, A., Lazaro, J. M., Blanco, L. & Salas, M. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi 29 DNA polymerase. J. Mol. Biol. 290, 241–251 (1999).

    Article  PubMed  Google Scholar 

  14. Brown, J. A. & Suo, Z. Unlocking the sugar ‘steric gate’ of DNA polymerases. Biochemistry 50, 1135–1142 (2011).

    Article  PubMed  Google Scholar 

  15. Gao, G. X., Orlova, M., Georgiadis, M. M., Hendrickson, W. A. & Goff, S. P. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc. Natl Acad. Sci. USA 94, 407–411 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Staiger, N. & Marx, A. A DNA polymerase with increased activity for ribonucleotides and C5-modified deoxyribonucleotides. ChemBioChem 11, 1963–1966 (2010).

    Article  PubMed  Google Scholar 

  17. Patel, D. H. & Loeb, L. A. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J. Biol. Chem. 275, 40266–40272 (2000).

    Article  PubMed  Google Scholar 

  18. Xia, G. et al. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an effecient RNA polymerase. Proc. Natl Acad. Sci. USA 99, 6597–6602 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ong, J. L., Loakes, D., Jaroslawski, S., Too, K. & Holliger, P. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J. Mol. Biol. 361, 537–550 (2006).

    Article  PubMed  Google Scholar 

  20. Cozens, C., Pinheiro, V. B., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8067–8072 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fogg, M. J., Pearl, L. H. & Connolly, B. A. Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat. Struct. Biol. 9, 922–927 (2002).

    Article  PubMed  Google Scholar 

  22. Gardner, A. F. et al. Therminator DNA polymerase: modified nucleotides and unnatural substrates. Front. Mol. Biosci. 6, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mehta, A. P. et al. Bacterial genome containing chimeric DNA-RNA sequences. J. Am. Chem. Soc. 140, 11464–11473 (2018).

    Article  PubMed  Google Scholar 

  25. Brunderova, M. et al. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat. Commun. 15, 3054 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kropp, H. M., Betz, K., Wirth, J., Diederichs, K. & Marx, A. Crystal structures of ternary complexes of archaeal B-family DNA polymerases. PLoS ONE 12, e0188005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gardner, A. F. & Jack, W. E. Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res. 27, 2545–2553 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maola, V. A. et al. Directed evolution of a highly efficient TNA polymerase achieved by homologous recombination. Nat. Cat. 7, 1173–1185 (2024).

    Google Scholar 

  29. Hogrefe, H. H., Cline, J., Lovejoy, A. E. & Nielson, K. B. DNA polymerases from hyperthermophiles. Methods Enzymol. 334, 91–116 (2001).

    Article  PubMed  Google Scholar 

  30. Ness, J. E. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002).

    Article  PubMed  Google Scholar 

  31. Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W. P. C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  PubMed  Google Scholar 

  32. d’Abbadie, M. et al. Molecular breeding of polymerases for amplification of ancient DNA. Nat. Biotechnol. 25, 939–943 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baar, C. et al. Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Res. 39, e51 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leconte, A. M. et al. Directed evolution of DNA polymerases for next-generation sequencing. Angew. Chem. Int. Ed. Engl. 49, 5921–5924 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yik, E. J., Maola, V. A. & Chaput, J. C. Engineering TNA polymerases through iterative cycles of directed evolution. Methods Enzymol. 691, 29–59 (2023).

    Article  PubMed  Google Scholar 

  36. Hottin, A. & Marx, A. Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc. Chem. Res. 49, 418–427 (2016).

    Article  PubMed  Google Scholar 

  37. Larsen, A. C. et al. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 7, 11235 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vallejo, D., Nikoomanzar, A., Paegel, B. M. & Chaput, J. C. Fluorescence-activated droplet sorting for single-cell directed evolution. ACS Synth. Biol. 8, 1430–1440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chaput, J. C. & Herdewijn, P. What Is XNA?. Angew. Chem. Int. Ed. Engl. 58, 11570–11572 (2019).

    Article  PubMed  Google Scholar 

  40. Wang, Y., Ngor, A. K., Nikoomanzar, A. & Chaput, J. C. Evolution of a general RNA-cleaving FANA enzyme. Nat. Commun. 9, 5067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Medina, E., Yik, E. J., Herdewijn, P. & Chaput, J. C. Functional comparison of laboratory-evolved XNA polymerases for synthetic biology. ACS Synth. Biol. 10, 1429–1437 (2021).

    Article  PubMed  Google Scholar 

  42. Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nikoomanzar, A., Dunn, M. R. & Chaput, J. C. Evaluating the rate and substrate specificity of laboratory evolved XNA polymerases. Anal. Chem. 89, 12622–12625 (2017).

    Article  PubMed  Google Scholar 

  44. Boosalis, M. S., Petruska, J. & Goodman, M. F. DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J. Biol. Chem. 262, 14689–14696 (1987).

    Article  PubMed  Google Scholar 

  45. Medina, E. & Chaput, J. C. Measuring XNA polymerase fidelity in a hydrogel particle format. Nucleic Acids Res. 53, gkaf038 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jackson, L. N., Chim, N., Shi, C. & Chaput, J. C. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Res. 47, 6973–6983 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, T. & Romesberg, F. E. Polymerase chain transcription: exponential synthesis of RNA and modified RNA. J. Am. Chem. Soc. 139, 9949–9954 (2017).

    Article  PubMed  Google Scholar 

  48. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez, A. C., Park, H.-W., Mao, C. & Beese, L. S. Crystal structure of a Pol A family DNA polymerase from the hyperthermophilic Archaeon Thermococcus sp. 9°N-7. J. Mol. Biol. 299, 447–462 (2000).

    Article  PubMed  Google Scholar 

  50. Bergen, K., Betz, K., Welte, W., Diederichs, K. & Marx, A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. ChemBioChem 14, 1058–1062 (2013).

    Article  PubMed  Google Scholar 

  51. Wing, R. et al. Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–758 (1980).

    Article  PubMed  Google Scholar 

  52. Zhou, H. X. & Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118, 1691–1741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nick McElhinny, S. A. et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6, 774–781 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Minshull, J. & Stemmer, W. P. Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290 (1999).

    Article  PubMed  Google Scholar 

  55. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Obexer, R., Nassir, M., Moody, E. R., Baran, P. S. & Lovelock, S. L. Modern approaches to therapeutic oligonucleotide manufacturing. Science 384, eadl4015 (2024).

    Article  PubMed  Google Scholar 

  58. Andrews, B. I. et al. Sustainability challenges and opportunities in oligonucleotide manufacturing. J. Org. Chem. 86, 49–61 (2021).

    Article  PubMed  Google Scholar 

  59. Flamme, M., McKenzie, L. K., Sarac, I. & Hollenstein, M. Chemical methods for the modification of RNA. Methods 161, 64–82 (2019).

    Article  PubMed  Google Scholar 

  60. Liu, Y. et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522, 368–372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, D., Han, Z., Liang, X. & Liu, Y. Engineering a DNA polymerase for modifying large RNA at specific positions. Nat. Chem. 17, 382–392 (2025).

    Article  PubMed  Google Scholar 

  62. Haslecker, R. et al. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat. Commun. 14, 8422 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moody, E. R., Obexer, R., Nickl, F., Spiess, R. & Lovelock, S. L. An enzyme cascade enables production of therapeutic oligonucleotides in a single operation. Science 380, 1150–1154 (2023).

    Article  PubMed  Google Scholar 

  64. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liao, J.-Y., Bala, S., Ngor, A. K., Yik, E. J. & Chaput, J. C. P(V) reagents for the scalable synthesis of natural and modified nucleoside triphosphates. J. Am. Chem. Soc. 141, 13286–13289 (2019).

    Article  PubMed  Google Scholar 

  66. Vallejo, D., Nikoomanzar, A. & Chaput, J. C. Directed evolution of custom polymerases using droplet microfluidics. Methods Enzymol. 644, 227–253 (2020).

    Article  PubMed  Google Scholar 

  67. Nikoomanzar, A., Dunn, M. R. & Chaput, J. C. Engineered polymerases with altered substrate specificity: expression and purification. Curr. Protoc. Nucleic Acid Chem. 69, 4.75.1–4.75.20 (2017).

    Article  PubMed  Google Scholar 

  68. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution?. Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  PubMed  Google Scholar 

  71. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  PubMed  Google Scholar 

  76. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. DeLano, W. L. The PYMOL molecular graphics system. api.semanticscholar.org/CorpusID:60136037 (2002).

  78. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 73, 148–157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    Article  PubMed  Google Scholar 

  80. Li, S., Olson, W. K. & Lu, X. J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sun, G., Voigt, J. H., Filippov, I. V., Marquez, V. E. & Nicklaus, M. C. PROSIT: pseudo-rotational online service and interactive tool, applied to a conformational survey of nucleosides and nucleotides. J. Chem. Inf. Comput. Sci. 44, 1752–1762 (2004).

    Article  PubMed  Google Scholar 

  82. Badaczewska-Dawid, A. E., Nithin, C., Wroblewski, K., Kurcinski, M. & Kmiecik, S. MAPIYA contact map server for identification and visualization of molecular interactions in proteins and biological complexes. Nucleic Acids Res. 50, W474–W482 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Chaput lab for their helpful comments and suggestions. This work was supported by the CLP and GM Divisions of the National Science Foundation (CHE-2433788 to J.C.C.) and the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Contributions

J.C.C., N.C. and E.L.M. conceived the project and designed the experiments. E.L.M. and V.A.M. evolved the enzyme. E.L.M., V.A.M., M.H. and A.R.H. performed the biochemical characterization. M.H., G.K.K. and E.J.H. crystallized the enzyme. J.C.C., E.L.M., V.A.M. and M.H. wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to John C. Chaput.

Ethics declarations

Competing interests

J.C.C., E.L.M., V.A.M. and the University of California, Irvine, have filed a patent application on the composition and activity of the C28 RNA polymerase. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jack Szostak, Yi Shi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 C28 reversion analysis.

a, Three segments of C28 harboring acquired mutations were reverted back to the parental Tgo-QGLK to create individual reversion constructs, RC1 (triangle), RC2 (square), and RC3 (diamond). RC3 contains five mutations, three of which are not observed in the crystal structure. b, Comparison of C28 activity against RC1, RC2, and RC3. Product formation was evaluated after 15, 30, or 60 s of incubation at 55 °C in an RNA primer extension assay with decreasing substrate concentrations.

Source data

Extended Data Fig. 2 C28 activity under fidelity assay conditions.

a, Schematic depicting the standard primer extension assay using a 5’ IR680-labeled primer annealed to a DNA template. b, Schematic depicting the ligation of a 5’ IR680-labeled primer to a chemically synthesized 5’ phosphorylated RNA oligonucleotide to generate an authentic standard for the product of the primer extension reaction. c, Denaturing PAGE analysis of C28 product formation after 1-h of incubation at 55 °C along with an authentic standard of primer-extended product.

Source data

Extended Data Fig. 3 C28 extends primers despite template mismatches.

A schematic depicts the 5’ IR680-labeled primer terminating in a 3’ cytosine, paired with a DNA template in which the complementary position (X) is either a matched guanine or one of the three mismatched bases (adenine, cytosine, or thymine). Comparison of C28 product formation reveals full-length product in all primer-duplex pairs following a 1-h incubation at 55 °C.

Source data

Extended Data Fig. 4 Mapping mutations acquired by homologous recombination.

a, The crystal structure of C28 is colored according to the distance to the active site, which is defined as the 3’-hydroxyl of U12. Residues within a 10 Å radius are green, residues between 10 and 35 Å are yellow, and residues outside 35 Å are red. Spheres indicate the alpha carbons of residues in C28 that differ from Tgo-QGLK (exo-). A rotated view provides clarity and perspective. b, The distance of each residue to the active site is measured in Å and mapped over the polymerase domains. Spheres are color coordinated to mutations shown in a. Three green triangles indicate the catalytic aspartates in the active site. Data exclude three C-terminal mutations not observed in the crystal structure.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–8 and Supplementary Figs. 1–19.

Reporting Summary

Supplementary Data 1

Raw and processed data for kinetic analysis of RNA polymerases.

Source data

Source Data Fig. 3

Uncropped gels for Fig. 3b–f.

Source Data Fig. 4

Uncropped gels for Fig. 4c,e.

Source Data Fig. 5

Uncropped gel.

Source Data Extended Data Fig. 1

Uncropped gels.

Source Data Extended Data Fig. 2

Uncropped gel.

Source Data Extended Data Fig. 3

Uncropped gels.

Source Data Extended Data Fig. 4

Distance to active site data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, E.L., Maola, V.A., Hajjar, M. et al. Rapid evolution of a highly efficient RNA polymerase by homologous recombination. Nat Chem Biol (2026). https://doi.org/10.1038/s41589-025-02124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41589-025-02124-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing