Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active aldehydes accelerate CD8+ T cell exhaustion by metabolic alteration in the tumor microenvironment

Abstract

Glycolysis and mitochondrial fatty acid oxidation (FAO) regulate CD8+ T cell differentiation, but how this metabolic balance regulates T cell exhaustion is unclear. PD-1 signaling inhibits glycolysis and enhances FAO. Here, we show that CD8+ T cells in tumors adhere to glycolysis with attenuated FAO despite high PD-1 expression. Active aldehydes, final products of lipid peroxidation, accumulate in CD8+ T cells in proportion to their level of exhaustion, defined by mitochondrial mass and potential. Aldehydes promote glycolysis and inhibit FAO in T cells. Mice deficient in an FAO enzyme in T cells generate more acrolein, a representative aldehyde, enhancing T cell exhaustion and attenuating antitumor immunity. Acrolein is generated partly from mitochondria and damages mitochondrial architecture. Inhibitors of lipid peroxidation or aldehydes enhanced PD-1-blockade by rectifying metabolic imbalance. Therefore, active aldehydes resulting from FAO impairment can cause a vicious cycle of metabolic imbalance that leads to T cell exhaustion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD8+ T cells undergo differentiation accompanied by changes in mitochondrial status.
Fig. 2: Acrolein accumulation in CD8+ T cells is dependent on exhaustion depth in the TME.
Fig. 3: Acrolein increases glycolysis and reduces FAO in vitro.
Fig. 4: Endogenous acrolein shapes the metabolic state of TEX cells in the TME.
Fig. 5: FAO dysfunction in T cells accelerates exhaustion and acrolein production.
Fig. 6: Lipid radical and acrolein scavengers recover antitumor immunity attenuated by FAO dysfunction.
Fig. 7: Acrolein scavengers restore antitumor immunity by reactivating FAO.

Similar content being viewed by others

Data availability

ScRNA-seq data generated in this study have been deposited in the Gene Expression Omnibus under accession code GSE307051. Source data are provided with this paper.

Code availability

Custom scripts supporting the data analysis were developed using standard computational tools and are available from the corresponding author upon reasonable request.

References

  1. Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Blank, C. U. et al. Defining T cell exhaustion. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8(+) T cells in cancer. Nat. Rev. Cancer 23, 780–798 (2023).

    Article  PubMed  CAS  Google Scholar 

  8. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022).

    Article  PubMed  CAS  Google Scholar 

  10. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chowdhury, P. S., Chamoto, K., Kumar, A. & Honjo, T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(.) T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka, K. et al. Combination bezafibrate and nivolumab treatment of patients with advanced non-small cell lung cancer. Sci. Transl. Med. 14, eabq0021 (2022).

    Article  PubMed  CAS  Google Scholar 

  15. Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).

    Article  PubMed  CAS  Google Scholar 

  16. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Rangel Rivera, G. O. et al. Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front. Immunol. 12, 645242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45, 358–373 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wu, H. et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat. Commun. 14, 6858 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8(+) T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31, 148–161 e145 (2020).

    Article  PubMed  Google Scholar 

  28. Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao, J. et al. Effects of altered glycolysis levels on CD8(+) T cell activation and function. Cell Death Dis. 14, 407 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, Y. et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 e379 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Luo, L. et al. Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials 270, 120678 (2021).

    Article  PubMed  CAS  Google Scholar 

  34. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012 e1005 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577 e1567 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xiao, L. et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J. Clin. Invest. 132, e153247 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786 e767 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rieger, A. M., Nelson, K. L., Konowalchuk, J. D. & Barreda, D. R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J. Vis. Exp. https://doi.org/10.3791/2597 (2011).

  43. Lang, C. R. et al. Efferocytosis drives myeloid NLRP3 dependent inflammasome signaling secretion of IL-1β to promote tumor growth. Front. Immunol. 13, 993771 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Song, X., Zhao, G., Wang, G. & Gao, H. Heterogeneity and differentiation trajectories of infiltrating CD8+ T cells in lung adenocarcinoma. Cancers 14, 5183 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  46. Qu, Q., Zeng, F., Liu, X., Wang, Q. J. & Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 7, e2226 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tonazzi, A., Giangregorio, N., Console, L., Palmieri, F. & Indiveri, C. The mitochondrial carnitine acyl-carnitine carrier (SLC25A20): molecular mechanisms of transport, role in redox sensing and interaction with drugs. Biomolecules 11, 521 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 e311 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yoshida, M. et al. Acrolein toxicity: comparison with reactive oxygen species. Biochem. Biophys. Res. Commun. 378, 313–318 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Saiki, R. et al. Brain infarction correlates more closely with acrolein than with reactive oxygen species. Biochem. Biophys. Res. Commun. 404, 1044–1049 (2011).

    Article  PubMed  CAS  Google Scholar 

  51. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mano, J., Miyatake, F., Hiraoka, E. & Tamoi, M. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta 230, 639–648 (2009).

    Article  PubMed  CAS  Google Scholar 

  54. Anderson, E. J., Katunga, L. A. & Willis, M. S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin. Exp. Pharm. Physiol. 39, 179–193 (2012).

    Article  CAS  Google Scholar 

  55. Xu, X. et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li, F., Liu, H., Zhang, D., Ma, Y. & Zhu, B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 167, 482–494 (2022).

    Article  PubMed  CAS  Google Scholar 

  58. Cai, H. J. et al. Downregulation of TCF1 in HIV infection impairs T-cell proliferative capacity by disrupting mitochondrial function. Front. Microbiol. 13, 880873 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wu, W. et al. AMPK facilitates intestinal long-chain fatty acid uptake by manipulating CD36 expression and translocation. FASEB J. 34, 4852–4869 (2020).

    Article  PubMed  CAS  Google Scholar 

  60. Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Biswas, M. S. & Mano, J. Lipid peroxide-derived reactive carbonyl species as mediators of oxidative stress and signaling. Front. Plant Sci. 12, 720867 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shi, R., Rickett, T. & Sun, W. Acrolein-mediated injury in nervous system trauma and diseases. Mol. Nutr. Food Res. 55, 1320–1331 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cai, J., Bhatnagar, A. & Pierce, W. M. Jr Protein modification by acrolein: formation and stability of cysteine adducts. Chem. Res. Toxicol. 22, 708–716 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Covey, T. M., Edes, K., Coombs, G. S., Virshup, D. M. & Fitzpatrick, F. A. Alkylation of the tumor suppressor PTEN activates Akt and β-catenin signaling: a mechanism linking inflammation and oxidative stress with cancer. PLoS ONE 5, e13545 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Kumar, A., Chamoto, K., Chowdhury, P. S. & Honjo, T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. eLife 9, e52330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hsiao, Y. et al. Analysis and visualization of quantitative proteomics data using FragPipe-Analyst. J. Proteome Res. 23, 4303–4315 (2024).

    Article  PubMed  CAS  Google Scholar 

  69. Ng, C. E. & Inch, W. R. Comparison of the densities of clonogenic cells from EMT6 fibrosarcoma monolayer cultures, multicell spheroids, and solid tumors in Ficoll density gradients. J. Natl Cancer Inst. 60, 1017–1022 (1978).

    Article  PubMed  CAS  Google Scholar 

  70. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  PubMed  CAS  Google Scholar 

  72. Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8(+) T cells. Nature 610, 161–172 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res 9, 47 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank members of the Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University for sample preparation and discussion; S. Fagarasan and T. Carvalho for productive discussion; the staff of the Clinical Bio-Resource Center at Kyoto University Hospital for collecting the human samples; and the staff of the Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, for preparing TEM slides. We are grateful to the Radioisotope Research Center, Agency for Health, Safety and Environment, Kyoto University, for supporting the experiments involving thymidine incorporation assays. This work was supported by the Japan Agency for Medical Research and Development under grant number JP25ama221330 (K.C.); JSPS KAKENHI under grant number JP23KJ1378 (K.K.); Yanai Fund (T. Honjo), Meiji Holdings Co. (T. Honjo and K.C.), Meiji Seika Pharma Co. (T. Honjo and K.C.) and Shimadzu Corporation (T. Honjo and K.C.). This manuscript was edited by Life Science Editors.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., K.K. and K.C. designed research; Y.H., K.K., K. Ichimaru, J.W., K.S., A.M., S.H., Y.W., K.Y., M.K. and H.K. performed research; Y.H., K.K., K. Ichimaru, T. Hirano, J.W., S.H., Y.W., T. Kozuki, T.Y., and K.C. analyzed data; Y.H., K.K., K. Ichimaru, J.W., K. Ito, T.M., H.D., T. Kobayashi, K.O. and T.Y. collected human samples; and Y.H., K.K., T. Honjo and K.C. wrote the paper. All authors reviewed the results and approved the manuscript.

Corresponding author

Correspondence to Kenji Chamoto.

Ethics declarations

Competing interests

T. Honjo and K.C. received research funding from Shimadzu Corporation. All other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Navdeep Chandel, Ping-Chih Ho and the other anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Nick Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Surrogate markers and phenotypic characterization of D1–D4 populations.

(A) A representative gating strategy: FSC-A/SSC-A profiles and frequencies of FSC-Alow cells of D1–D4 populations among PD-1+ CD8+ TILs in MC38 tumors on day 14 (n = 6 mice). (B) MC38-OVA cells were injected intradermally into CD45.1 congenic male and female mice on day 0. Male and female mice were equally distributed across groups. On day 9 after tumor inoculation, isolated naïve (CD44low) OT-1 CD8⁺ T cells (CD45.2⁺) were intravenously transferred into the tumor-bearing CD45.1 recipient mice. Prior to transfer, the isolated naïve CD8⁺ T cells (CD45.2⁺) were also analyzed by flow cytometry (representative profiles shown). Tumor-infiltrating donor PD-1⁺ CD8⁺ T cells (CD45.2⁺) were analyzed by flow cytometry on days 13, 16, and 20 after tumor inoculation (that is, days 4, 7, and 11 after transfer). Representative flow cytometry profiles (male recipients) and frequencies of D1–D4 cells, based on mitochondrial mass and mitochondrial potential (all recipients, n = 6 mice). (C) Among PD-1+ CD8+ T cells in MC38 tumors, the FSC-Alow population is regarded as D4’ whereas the FSC-Ahigh population is divided into 3 populations (D1’ to D3’) according to their mitochondrial potential intensity. Distributions of D1’-D4’ populations are compared with D1–D4 gates. (D) Representative histogram and MFI of IFN-γ, TNF-α, granzyme B and perforin in D1’-D4’ populations among PD-1+ CD8+ T cells in MC38 tumors on day 14 (n = 6 mice). (E) Frequencies of CD38+, CD39+ and CD73+ cells in D1–D4 populations among PD-1+ CD8+ T cells in tumors on day 14 (n = 8 mice). (F) MFI of IFN-γ, TNF-α, granzyme B and perforin in D1’-D4’ populations among naïve CD8+ T cells on day 8 of repetitive stimulation (n = 5 technical replicates). (G) MFI of Annexin V, Tim-3 and LAG-3 in D1’-D4’ or D1–D4 populations among naïve CD8+ T cells on day 8 of repetitive stimulation (n = 5 technical replicates). (H) Based on the data shown in Fig. 1e, UMAP projection revealed six distinct clusters. (I) Violin plots showing exhausted or stem-like signature scores for each cluster. Data are means ± SEMs (A and B). P values were determined using paired two-tailed Student’s t tests (D to G) or one-way ANOVA with Tukey’s multiple comparisons tests (B and I). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. All data are representative of three or more independent experiments with similar results, except (H) and (I).

Extended Data Fig. 2 Active aldehyde accumulates in CD8+ T cells in an exhaustion depth-dependent manner in vitro and in vivo.

(A) Flow cytometry profile and MFI of lipid radical in Tim-3 and Tim-3+ populations among PD-1+ CD8+ T cells in tumors on day 14 (n = 8 mice). (B) Flow cytometry profile and MFI of acrolein or PC-Acro in Tim-3 and Tim-3+ populations among PD-1+ CD8+ T cells in tumors on day 14 (acrolein, n = 5 mice; PC-Acro, n = 7 mice). (C) MFI of protein-conjugated malondialdehyde (PC-MDA) and protein-conjugated 4-hydroxynonenal (PC-4-HNE) in Tim-3 and Tim-3+ populations among PD-1+ CD8+ T cells in tumors on day 14 (n = 7 mice) and on day 17 (n = 8 mice), respectively. (D) MFI of lipid radical, acrolein and PC-Acro in D1’-D4’ populations among naïve CD8+ T cells on day 8 of repetitive stimulation (n = 5 technical replicates). (E) MFI of acrolein in naïve-derived CD8+ T cells on day 0, 2, 6 and 10 of repetitive stimulation (n = 5 technical replicates). P values were determined using paired two-tailed Student’s t tests (A to D) or one-way ANOVA with Tukey’s multiple comparisons tests (E). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. All data are representative of three or more independent experiments with similar results.

Extended Data Fig. 3 Active aldehydes, but not hydrogen peroxide (H2O2), enhance glycolysis and proliferation of CD8+ T cells.

(A) Acrolein concentration (μM) in MC38 tumor tissue on day 14 (n = 6 mice). An experimental control group was not included, as the experiment aimed to determine the physiological acrolein levels in tumor tissues. (B) Frequencies of D1–D4 populations among CD8+ T cells 21 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 2 μM acrolein (ACR) (n = 5 technical replicates). (C) MFI of pAkt, pmTOR and pS6 in naïve-derived CD8+ T cells on day 8 of repetitive stimulation in the presence or absence of ACR (n = 5 technical replicates). (D) Frequencies of PD-1 Tim-3 and PD-1+ Tim-3+ cells among naïve-derived CD8+ T cells on day 8 of repetitive stimulation in the presence or absence of ACR (n = 5 technical replicates). (E) Western blotting images of enzymes associated with glycolysis and FAO in CD8+ T cells stimulated with anti-CD3/CD28 beads for 3 hours in the presence or absence of 5 μM ACR. (F) Seahorse measurement of real-time ECAR of naïve CD8+ T cells 3 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 0.5 μM 4-hydroxynonenal (4-HNE) (n = 4 technical replicates). (G) Thymidine incorporation of CD8+ T cells 7 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 0.5 μM 4-HNE (n = 4 technical replicates). The control data are shared with those in Fig. 3f to compare results under the same conditions in the same experiment, as supportive data. (H) Seahorse measurement of real-time ECAR of CD8+ T cells 3 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 120 μM H2O2 (n = 4 technical replicates). (I) Frequencies of D1–D4 populations among CD8+ T cells 7 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 120 μM H2O2 (n = 6 technical replicates). (J) Frequencies of D1–D4 populations among CD8+ T cells 14 hours after stimulation with anti-CD3/CD28 beads in the presence or absence of 60 μM H2O2 (n = 5 technical replicates). Data are means ± SEMs. P values were determined using unpaired two-tailed Student’s t tests. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. All data are representative of two or more independent experiments with similar results.

Source data

Extended Data Fig. 4 Suppressed T cells exhaustion by acrolein scavengers and expression level of Aldh2 in D1–D3.

(A) Frequencies of PD-1 Tim-3 and PD-1+ Tim-3+ cells among naïve-derived CD8+ T cells on day 8 of repetitive stimulation in the presence or absence of N-benzylhydroxylamine (NBHA) (n = 5 technical replicates). The control data are shared with those in Extended Data Fig. 3d to compare results under the same conditions in the same experiment, as supportive data. (B) Expression level of Aldh2 in D1–D3 of PD-1+ CD8+ T cells sorted from MC38 tumors on day 14, evaluated by scRNA-seq. Data are means ± SEMs (A). P values were determined using unpaired two-tailed Student’s t tests (A). ****P < 0.0001. Data are representative of two or more independent experiments with similar results, except (B).

Extended Data Fig. 5 Unnecessary fatty acid uptake boosts FAO dysfunction in TME CD8+ T cells.

(A) MFI of lipid radical, acrolein and PC-Acro in naïve (CD62Lhigh CD44low) CD8+ T cells in PBMCs from Hadhaflox/flox (Ctrl) and Hadhaflox/flox Cd4-Cre (KO) male mice (Ctrl, n = 7 mice; KO, n = 5 mice). (B) MFI of pAkt, pS6 and 2-NBDG in naïve CD8+ T cells in PBMCs from Ctrl and KO male mice (Ctrl, n = 7 mice; KO, n = 5 mice). (C) CD36 expression and BODIPY C5, C12, and C16 (fatty acid uptake) in naïve CD8+ T cells in PBMCs from Ctrl and KO male mice. (Ctrl, n = 7 mice; KO, n = 5 mice). (D) BODIPY C5, C12, and C16 in Tim-3 and Tim-3+ populations among PD-1+ CD8+ T cells in MC38 tumors on day 14 (n = 5 mice). (E) The positive loop toward intensive oxidative stress by FAO dysfunction in CD8+ T cells in TME. Acrolein production following lipid peroxidation damages mitochondria and reduces the FAO activity. FAO dysregulation promotes fatty acid uptake and drives further accumulation of lipid peroxidation and acrolein. Created with BioRender.com, elements adapted and assembled using PowerPoint. Data are means ± SEMs (A to C). P values were determined using unpaired two-tailed Student’s t tests (A to C) or paired two-tailed Student’s t tests (D). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Data are representative of two independent experiments with similar results.

Extended Data Fig. 6 Acrolein scavenger attenuates Akt/mTOR/S6 pathway of CD8+ T cells in TME.

MFI of pAkt, pmTOR, pS6 and Glut1 in PD-1+ CD8+ T cells in MC38 tumors on day 10 from WT female mice treated with anti-PD-L1 mAb and N-benzylhydroxylamine (NBHA) as indicated in Fig. 7b (Ctrl, n = 8 mice; the other groups, n = 6 mice). Data are means ± SEMs. P values were determined using unpaired two-tailed Student’s t tests. *P < 0.05. Data are representative of two independent experiments with similar results.

Extended Data Fig. 7 Vicious loop toward metabolic exhaustion by active aldehyde accumulation in the process of CD8+ T cell exhaustion in TME.

(A) In CD8+ T cells of TME, lipid peroxidation gradually proceeds due to mitochondrial ROS production. Lipid peroxidation generates active aldehydes from mitochondria, attenuating the mitochondrial FAO function. A positive loop of active aldehydes accumulation is then established as shown in Extended Data Fig. 5e. (B) Active aldehydes boost the glycolysis pathway forcedly even if the cell expresses PD-1. (C) Active aldehyde accumulation attenuates FAO and boosts glycolysis, shaping the metabolic exhaustion state. Created with BioRender.com, elements adapted and assembled using PowerPoint.

Supplementary information

Reporting Summary

Supplementary Table 1

Genes upregulated in D3 compared to D1 (GO analysis).

Supplementary Table 2

Phosphoproteomics data comparing ACR and Ctrl groups.

Supplementary Table 3

Canonical pathway analysis of IPA.

Supplementary Table 4

The targeted metabolite for metabolic trace analysis of 13C-labeled glucose and palmitate.

Source data

Source Data Fig. 3

Uncropped immunoblot data for Fig. 3k.

Source Data Extended Data Fig. 3

Uncropped immunoblot data for Extended Data Fig. 3e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haku, Y., Kitaoka, K., Ichimaru, K. et al. Active aldehydes accelerate CD8+ T cell exhaustion by metabolic alteration in the tumor microenvironment. Nat Immunol (2026). https://doi.org/10.1038/s41590-025-02370-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41590-025-02370-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer