Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Abrupt trend change in global mean sea level and its components in the early 2010s
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Abrupt trend change in global mean sea level and its components in the early 2010s

  • Lancelot Leclercq  ORCID: orcid.org/0009-0007-5838-267X1,
  • Julius Oelsmann2,
  • Anny Cazenave  ORCID: orcid.org/0000-0002-2289-18581,
  • Marcello Passaro3,
  • Svetlana Jevrejeva4,
  • Sarah Connors  ORCID: orcid.org/0000-0001-7150-51355,
  • Jean-François Legeais6,
  • Florence Birol1 &
  • …
  • Rodrigo Abarca-del-Rio7 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1191 Accesses

  • 12 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Physical oceanography

Abstract

Abrupt changes at decadal time scale are recurrent events in the modern climate system. Using multiple trend-change detection methods, here we report such an abrupt trend change in the early 2010s in the altimetry-based global mean sea level record, as well as in its thermal and mass components. Abrupt trend change in the mass component is mostly due to terrestrial water storage and to a lesser extent to ice sheet melting. The linear rate of rise of the global mean sea level increases abruptly from 2.9 ± 0.22 mm yr−1 over 1993–2011 to 4.1 ± 0.25 mm yr−1 over 2012–2024. Abrupt trend changes in numerous climate parameters have also been reported in the early 2010s, suggesting a more global phenomenon. Internal climate variability is likely the main driver of the early 2010s sharp change observed in sea level and components, although one cannot totally exclude any additional contribution from increased radiative forcing.

Similar content being viewed by others

Atmospheric and oceanic circulation altered by global mean sea-level rise

Article 16 March 2023

A framework for estimating the anthropogenic part of Antarctica’s sea level contribution in a synthetic setting

Article Open access 11 March 2024

Emergence of a climate oscillation in the Arctic Ocean due to global warming

Article Open access 11 November 2024

Data availability

The DT2024 gridded altimetry data set is available from the Copernicus web site (https://climate.copernicus.eu (https://doi.org/10.24381/cds.4c328c78)). The DT2021 global mean sea level time series is available at https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level/data-acces.html. The Argo data are available from the https://sio-argo.ucsd.edu and https://apdrc.soest.hawaii.edu/projects/argo websites. The OHC data are available from Magellium/LEGOS at https://doi.org/10.24400/527896/A01-2020.003. The glacier mass balance data are available from Copernicus at https://doi.org/10.24381/CDS.BA597449. The IMBIE ice sheet mass balance is available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452.

References

  1. IPCC. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009157896 (Cambridge University Press, 2021).

  2. Leclercq, L. et al. Spatio-temporal changes in interannual sea level along the world coastlines. Glob. Planet. Chang. 253, 104972 (2025).

    Google Scholar 

  3. Dangendorf, S. et al. Acceleration of U.S. Southeast and Gulf Coast sea-level rise amplified by internal climate variability. Nat. Commun. 14, 1935 (2023).

    Google Scholar 

  4. Yin, J. Rapid decadal acceleration of sea level rise along the US East and Gulf coasts during 2010–22 and its impact on hurricane-induced storm surge. J. Clim. 36, 4511–4529 (2023).

    Google Scholar 

  5. Steinberg, J. M., Piecuch, C. G., Hamlington, B. D., Thompson, P. R. & Coats, S. Influence of deep-ocean warming on coastal sea-level decadal trends in the Gulf of Mexico. J. Geophys. Res. Oceans 129, e2023JC019681 (2024).

    Google Scholar 

  6. Leclercq, L. et al. Coastal sea level rise at altimetry-based virtual stations in the Gulf of Mexico. Adv. Space Res. 75, 1636–165275 (2025).

    Google Scholar 

  7. Cheng, X. et al. Regime shift of the sea level trend in the South China Sea modulated by the tropical Pacific decadal variability. Geophys. Res. Lett. 50, e2022GL102708 (2023).

    Google Scholar 

  8. Zhao, K. et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: a Bayesian ensemble algorithm. Remote Sens. Environ. 232, 111181 (2019).

    Google Scholar 

  9. Oelsmann, J. et al. Bayesian modelling of piecewise trends and discontinuities to improve the estimation of coastal vertical land motion: DiscoTimeS: a method to detect change points in GNSS, satellite altimetry, tide gauge and other geophysical time series. J. Geod. 96, 62 (2022).

    Google Scholar 

  10. Dieng, H. B., Cazenave, A., Meyssignac, B. & Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 44, 3744–3751 (2017).

    Google Scholar 

  11. Nerem, R. S. et al. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. 115, 2022–2025 (2018).

    Google Scholar 

  12. Guérou, A. et al. Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty. Ocean Sci. 19, 431–451 (2023).

    Google Scholar 

  13. Hamlington, B. D. et al. The rate of global sea level rise doubled during the past three decades. Commun. Earth Environ. 5, 1–4 (2024).

    Google Scholar 

  14. Dangendorf, S. et al. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 9, 705–710 (2019).

    Google Scholar 

  15. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in Selected Papers of Hirotugu Akaike (eds Parzen, E., Tanabe, K. & Kitagawa, G.) 199–213 (Springer, 1998).

  16. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Google Scholar 

  17. IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 755 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).

  18. Rodionov, S. N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31, L09204 (2004).

    Google Scholar 

  19. Overland, J., Rodionov, S., Minobe, S. & Bond, N. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oceanogr. 77, 92–102 (2008).

    Google Scholar 

  20. Buzzanga, B., Hamlington, B., Fasullo, J., Landerer, F. & Peidou, A. Interdecadal variability of terrestrial water storage since 2003. Commun. Earth Environ. 6, 1–9 (2025).

    Google Scholar 

  21. Zhang, X. et al. Understanding the shift in drivers of terrestrial water storage decline in the central Inner Mongolian steppe over the past two decades. J. Hydrol. 636, 131312 (2024).

    Google Scholar 

  22. Sun, N. et al. Amplified extreme floods and shifting flood mechanisms in the Delaware River Basin in future climates. Earth’s. Future 12, e2023EF003868 (2024).

    Google Scholar 

  23. Subrahmanyam, K. V. et al. Regional shift in the peak time of maximum Indian summer monsoon rainfall in recent decades. Geophys. Res. Lett. 52, e2024GL112697 (2025).

    Google Scholar 

  24. Preece, J. R. et al. Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat. Commun. 14, 3759 (2023).

    Google Scholar 

  25. Graversen, R. G., Heiskanen, T., Bintanja, R. & Goelzer, H. Abrupt increase in Greenland melt enhanced by atmospheric wave changes. Clim. Dyn. 62, 7171–7183 (2024).

    Google Scholar 

  26. Nghiem, S. V. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

    Google Scholar 

  27. Lee, S.-K. et al. A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s. Nat. Commun. 15, 10642 (2024).

    Google Scholar 

  28. Xiao, D. & Ren, H.-L. A regime shift in North Pacific annual mean sea surface temperature in 2013/14. Front. Earth Sci. 10, 2022 (2023).

    Google Scholar 

  29. Merchant, C. J., Allan, R. P. & Embury, O. Quantifying the acceleration of multidecadal global sea surface warming driven by Earth’s energy imbalance. Environ. Res. Lett. 20, 024037 (2025).

    Google Scholar 

  30. Wang, L. et al. Recent shift in the warming of the southern oceans modulated by decadal climate variability. Geophys. Res. Lett. 48, e2020GL090889 (2021).

    Google Scholar 

  31. Jouanno, J., Berthet, S., Muller-Karger, F., Aumont, O. & Sheinbaum, J. An extreme North Atlantic Oscillation event drove the pelagic Sargassum tipping point. Commun. Earth Environ. 6, 1–11 (2025).

    Google Scholar 

  32. Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).

    Google Scholar 

  33. Kramer, R. J. et al. Observational evidence of increasing global radiative forcing. Geophys. Res. Lett. 48, e2020GL091585 (2021).

    Google Scholar 

  34. Jenkins, S. et al. Is Anthropogenic global warming accelerating?. J. Clim. 35, 7873–7890 (2022).

    Google Scholar 

  35. Hakuba, M. Z. et al. Trends and variability in Earth’s energy imbalance and ocean heat uptake since 2005. Surv. Geophys 45, 1721–1756 (2024).

    Google Scholar 

  36. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming. Earth’s. Future 1, 19–32 (2013).

    Google Scholar 

  37. Smith, D. Has global warming stalled. Nat. Clim. Chang. 3, 618–619 (2013).

    Google Scholar 

  38. Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Chang. 6, 224–228 (2016).

    Google Scholar 

  39. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 1, 360–364 (2011).

    Google Scholar 

  40. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Google Scholar 

  41. Watanabe, M. et al. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40, 3175–3179 (2013).

    Google Scholar 

  42. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Google Scholar 

  43. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).

    Google Scholar 

  44. Trenberth, K. E. Has there been a hiatus. Science 349, 691–692 (2015).

    Google Scholar 

  45. Quaas, J. et al. Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmos. Chem. Phys. 22, 12221–12239 (2022).

    Google Scholar 

  46. Hodnebrog, O. et al. Recent reductions in aerosol emissions have increased Earth’s energy imbalance. Commun. Earth Environ. 5, 166 (2024).

    Google Scholar 

  47. Liu, L., Wen, Z., Liu, S., Zhang, X. & Liu, X. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nat. Geosci. 17, 733–736 (2024).

    Google Scholar 

  48. Pan, D. et al. Regime shift in secondary inorganic aerosol formation and nitrogen deposition in the rural United States. Nat. Geosci. 17, 617–623 (2024).

    Google Scholar 

  49. Allan, R. P. & Merchant, C. J. Reconciling Earth’s growing energy imbalance with ocean warming. Environ. Res. Lett. 20, 044002 (2025).

    Google Scholar 

  50. Forster, P. M. et al. Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

    Google Scholar 

  51. Fraedrich, K., Gerstengarbe, F.-W. & Werner, P. C. Climate Shifts during the Last Century. Clim. Chang. 50, 405–417 (2001).

    Google Scholar 

  52. Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E. & Oberhuber, J. M. The 1976-77 climate shift of the Pacific ocean. Oceanography 7, 21–26 (1994).

    Google Scholar 

  53. Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 9, 303–319 (1994).

    Google Scholar 

  54. Wu, L., Lee, D. E. & Liu, Z. The 1976/77 North Pacific climate regime shift: the role of subtropical ocean adjustment and coupled ocean–atmosphere feedbacks. J. Clim. 18, 5125–5140 (2005).

    Google Scholar 

  55. Hartmann, B. & Wendler, G. The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Clim. 18, 4824–4839 (2005).

    Google Scholar 

  56. Xavier, A. K., Varikoden, H., Babu, C. A. & Reshma, T. Influence of PDO and ENSO with Indian summer monsoon rainfall and its changing relationship before and after 1976 climate shift. Clim. Dyn. 61, 5465–5482 (2023).

    Google Scholar 

  57. Xiao, D. Spatial–temporal characteristics of the atmospheric decadal abrupt changes around 2013 and their differences from those in the late 1970s. Clim. Dyn. 63, 118 (2025).

  58. Dangendorf, S. et al. Probabilistic reconstruction of sea-level changes and their causes since 1900. Earth Syst. Sci. Data 16, 3471–3494 (2024).

    Google Scholar 

  59. Kocha, C. et al. 30 years of sea level anomaly reprocessed to improve climate and mesoscale satellite data record, https://ostst.aviso.altimetry.fr/programs/2023-ostst-complete-program, https://doi.org/10.24400/527896/a03-2023.3804 (2023).

  60. Peltier, W.R., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).

    Google Scholar 

  61. Brown, S., Willis, J. K. & Fournier, S. Jason-3 wet path delay correction. Ver. F. PO.DAAC, CA, USA, https://doi.org/10.5067/J3L2G-PDCOR (2023).

  62. Prandi, P. et al. Local sea level trends, accelerations and uncertainties over 1993–2019. Sci. Data 8, 1 (2021).

    Google Scholar 

  63. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).

    Google Scholar 

  64. Hosoda, S., Ohira, T. & Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 8, 47–59 (2008).

    Google Scholar 

  65. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Google Scholar 

  66. Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N. & von Schuckmann, K. In situ–based reanalysis of the global ocean temperature and salinity with ISAS: variability of the heat content and steric height. J. Clim. 29, 1305–1323 (2016).

    Google Scholar 

  67. Kolodziejczyk, N., Prigent-Mazella, A. & Gaillard, F. ISAS temperature, salinity, dissolved oxygen gridded fields, SEANOE, https://doi.org/10.17882/52367 (2023).

  68. Marti, F. et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst. Sci. Data 14, 229–249 (2022).

    Google Scholar 

  69. Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets. Geophys. J. Int. 215, 415–430 (2018).

    Google Scholar 

  70. Horwath, M. et al. Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation. Earth Syst. Sci. Data 14, 411–447 (2022).

    Google Scholar 

  71. Magellium/LEGOS. OHC/EEI from space: climate indicators: Ocean heat content and Earth energy imbalance. https://doi.org/10.24400/527896/A01-2020.003 (2023).

  72. Shepherd, A. et al. Antarctic and Greenland Ice Sheet mass balance 1992-2020 for IPCC AR6. https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (2021).

  73. Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    Google Scholar 

  74. Copernicus Climate Change Service. Glacier mass change gridded data from 1976 to present derived from the Fluctuations of Glaciers Database. https://doi.org/10.24381/CDS.BA597449 (2023).

  75. Boergens, E., Dobslaw, H. & Dill, R. GFZ GravIS RL06 Continental Water Storage Anomalies. https://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS (2019).

  76. Boergens, E. et al. Uncertainties of GRACE-based terrestrial water storage anomalies for arbitrary averaging regions. J. Geophys. Res. Solid Earth 127, e2021JB022081 (2022).

    Google Scholar 

  77. Dahle, C. & Murböck, M. Post-processed GRACE/GRACE-FO Geopotential GSM Coefficients GFZ RL06 (Level-2B Product). https://doi.org/10.5880/GFZ.GRAVIS_06_L2B (2019).

  78. Legates, D. R. & Outcalt, S. I. Detection of climate transitions and discontinuities by Hurst rescaling. Int. J. Climatol. 42, 4753–4772 (2022).

    Google Scholar 

  79. Beaugrand, G. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130264 (2015).

    Google Scholar 

  80. Maeng, H. & Fryzlewicz, P. Detecting linear trend changes in data sequences. Stat. Pap. 65, 1645–1675 (2024).

    Google Scholar 

  81. Gupta, M., Wadhvani, R. & Rasool, A. Comprehensive analysis of change-point dynamics detection in time series data: a review. Expert Syst. Appl. 248, 123342 (2024).

    Google Scholar 

  82. Li, J., Li, Z.-L., Wu, H. & You, N. Trend, seasonality, and abrupt change detection method for land surface temperature time-series analysis: evaluation and improvement. Remote Sens. Environ. 280, 113222 (2022).

    Google Scholar 

  83. Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    Google Scholar 

  84. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Google Scholar 

Download references

Acknowledgements

This study is partly funded by the ESA Climate Change Initiative Sea Level project (https://climate.esa.int/en/projects/sea-level). L.L. is supported by this project (grant number 4000126561/19/I-NB).

Author information

Authors and Affiliations

  1. Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France

    Lancelot Leclercq, Anny Cazenave & Florence Birol

  2. School of Science & Engineering, Tulane University, New Orleans, LA, USA

    Julius Oelsmann

  3. Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Munich, Germany

    Marcello Passaro

  4. National Oceanography Center, Liverpool, UK

    Svetlana Jevrejeva

  5. European Space Agency, Climate Office, Harwell, UK

    Sarah Connors

  6. CLS, Ramonville St Agne, France

    Jean-François Legeais

  7. Department of Geophysics, University of Concepcion, Concepcion, Chile

    Rodrigo Abarca-del-Rio

Authors
  1. Lancelot Leclercq
    View author publications

    Search author on:PubMed Google Scholar

  2. Julius Oelsmann
    View author publications

    Search author on:PubMed Google Scholar

  3. Anny Cazenave
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcello Passaro
    View author publications

    Search author on:PubMed Google Scholar

  5. Svetlana Jevrejeva
    View author publications

    Search author on:PubMed Google Scholar

  6. Sarah Connors
    View author publications

    Search author on:PubMed Google Scholar

  7. Jean-François Legeais
    View author publications

    Search author on:PubMed Google Scholar

  8. Florence Birol
    View author publications

    Search author on:PubMed Google Scholar

  9. Rodrigo Abarca-del-Rio
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.C. and L.L. designed the study. L.L. and J.O. analyzed the data. A.C., L.L., and J.O. wrote a first version of the manuscript. All co-authors, A.C., L.L., J.O., M.P., S.J., S.C., J.F.L., F.B., R.A., contributed to discussing the results, to editing and final writing of the manuscript.

Corresponding author

Correspondence to Anny Cazenave.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Communications Earth and Environment thanks John Church, Christian Franzke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Nicole Khan and Alice Drinkwater. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclercq, L., Oelsmann, J., Cazenave, A. et al. Abrupt trend change in global mean sea level and its components in the early 2010s. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03149-5

Download citation

  • Received: 12 May 2025

  • Accepted: 17 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s43247-025-03149-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing