Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Mapping the transcriptional and epigenetic landscape of organotypic endothelial diversity in the developing and adult mouse

Abstract

The vascular endothelium features unique molecular and functional properties across different vessel types, such as between arteries, veins and capillaries, as well as between different organs, such as the leaky sinusoidal endothelium of the liver versus the impermeable vessels of the brain. However, the transcriptional networks governing endothelial organ specialization remain unclear. Here we profile the accessible chromatin and transcriptional landscapes of the endothelium from the mouse liver, lung, heart, kidney, brain and retina, across developmental time, to identify potential transcriptional regulators of endothelial heterogeneity. We then determine which of these putative regulators are conserved in human brain endothelial cells, and using single-cell transcriptomic profiling, we define which regulatory networks are active during brain maturation. Finally, we show that the putative transcriptional regulators identified by these three approaches molecularly and functionally reprogram naive endothelial cells. Thus, this resource can be used to identify potential transcriptional regulators controlling the establishment and maintenance of organ-specific endothelial specialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolation and characterization of tissue-specific endothelial signatures throughout development.
Fig. 2: ECs from diverse organs share a core epigenetic signature.
Fig. 3: Profiling accessible chromatin and expressed transcripts identifies organ-specific endothelial signatures.
Fig. 4: Chromatin accessibility changes across time in the brain endothelium.
Fig. 5: Evolutionary conservation of transcription factor motifs in regions of open chromatin between humans and adult mice.
Fig. 6: Maturation of the BBB at single-cell resolution.
Fig. 7: Temporal transcriptomic profiling of the mouse cerebrovasculature.
Fig. 8: Organ-specific transcription factors reprogram endothelial cell gene expression and alter barrier functionality.

Similar content being viewed by others

Data availability

Data within this paper were mapped to the mouse (mm10, https://genome.ucsc.edu/cgi-bin/hgTracks?db=mm10&chromInfoPage=&pix=1821) or human (hg38, https://genome.ucsc.edu/cgi-bin/hgGateway) genome. Datasets generated in this study were deposited at the Gene Expression Omnibus: mouse bulk ATAC-seq and RNA-seq data, accession GSE185345, and human dataset, accession GSE187565. Mouse ATAC-seq data can be visualized at https://genome.ucsc.edu/s/mguiterr/ATAC_Summary_Final_CyVerse. For human ATAC-seq data, tracks can be visualized at https://genome.ucsc.edu/s/mguiterr/hg38_hCMEC_ATAC. The scRNA-seq data can be explored directly using the following web-based resources: https://wythelab.shinyapps.io/ScRNA_Brain_EC_Development/ or https://singlecell.broadinstitute.org/single_cell/reviewer_access/a4af66e3-f699-4ace-995a-60e56e3bdf7f, code: MFQN6BNPDU. The R studio object for single-cell data is available via figshare at https://doi.org/10.6084/m9.figshare.28266635 (ref. 196). All plasmids described in this study are available via Addgene at https://www.addgene.org/Joshua_Wythe/. Source data are provided with this paper.

Code availability

The code workflow used to generate data in the paper is available via GitHub at https://github.com/wythelab/Cantu_Hill_EC_Diversity.

References

  1. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Paik, D. T. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142, 1848–1862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwa, C. & Aird, W. C. The history of the capillary wall: doctors, discoveries, and debates. Am. J. Physiol. Heart Circ. Physiol. 293, H2667–H2679 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Mohamed, T. & Sequeira-Lopez, M. L. S. Development of the renal vasculature. Semin. Cell Dev. Biol. 91, 132–146 (2019).

    Article  PubMed  Google Scholar 

  7. Churg, J. & Grishman, E. Ultrastructure of glomerular disease: a review. Kidney Int. 7, 254–261 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Menzel, S. & Moeller, M. J. Role of the podocyte in proteinuria. Pediatr. Nephrol. 26, 1775–1780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fish, J. E. & Wythe, J. D. The molecular regulation of arteriovenous specification and maintenance. Dev. Dyn. 244, 391–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Vila Ellis, L. et al. Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev. Cell 52, 617–630.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Cleuren, A. C. A. et al. The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proc. Natl Acad. Sci. USA 116, 23618–23624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

    Article  PubMed  Google Scholar 

  14. Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sorensen, I., Adams, R. H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).

    Article  PubMed  Google Scholar 

  17. Deal, R. B. & Henikoff, S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matus, A., Bernhardt, R. & Hugh-Jones, T. High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain. Proc. Natl Acad. Sci. USA 78, 3010–3014 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanai, Y. & Hirokawa, N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulate microtubule binding. Neuron 14, 421–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Mizushima, W. et al. The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes. J. Mol. Cell. Cardiol. 100, 43–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, L. et al. RNF207 exacerbates pathological cardiac hypertrophy via post-translational modification of TAB1. Cardiovasc. Res. 119, 183–194 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Farrelly, D. et al. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. Proc. Natl Acad. Sci. USA 96, 14511–14516 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vandercammen, A. & Van Schaftingen, E. Species and tissue distribution of the regulatory protein of glucokinase. Biochem. J. 294, 551–556 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung, M. I. & Hogan, B. L. M. Ager-CreERT2: a new genetic tool for studying lung alveolar development, homeostasis, and repair. Am. J. Respir. Cell Mol. Biol. 59, 706–712 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ihara, K. et al. MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. Am. J. Pathol. 184, 2699–2708 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ihara, K., Nishimura, T., Fukuda, T., Ookura, T. & Nishimori, K. Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice. Gene Expr. Patterns 12, 95–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Harris, E. S. & Nelson, W. J. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr. Opin. Cell Biol. 22, 651–658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newman, P. J. The role of PECAM-1 in vascular cell biology. Ann. N.Y. Acad. Sci. 714, 165–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Christiansen, G. B. et al. The sorting receptor SorCS3 is a stronger regulator of glutamate receptor functions compared to GABAergic mechanisms in the hippocampus. Hippocampus 27, 235–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Roder, K. et al. RING finger protein RNF207, a novel regulator of cardiac excitation. J. Biol. Chem. 289, 33730–33740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Z. Y., Jin, L., Tan, H. & Irwin, D. M. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR). PLoS ONE 8, e60896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leikauf, G. D. et al. Integrative assessment of chlorine-induced acute lung injury in mice. Am. J. Respir. Cell Mol. Biol. 47, 234–244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balbas, M. D. et al. MAGI-2 scaffold protein is critical for kidney barrier function. Proc. Natl Acad. Sci. USA 111, 14876–14881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coppiello, G. et al. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 131, 815–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Duim, S. N., Kurakula, K., Goumans, M. J. & Kruithof, B. P. Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart. J. Mol. Cell. Cardiol. 81, 127–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z. W. et al. Oit3, a promising hallmark gene for targeting liver sinusoidal endothelial cells. Signal Transduct. Target. Ther. 8, 344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barry, D. M. et al. Molecular determinants of nephron vascular specialization in the kidney. Nat. Commun. 10, 5705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vijayaraj, P. et al. Erg is a crucial regulator of endocardial–mesenchymal transformation during cardiac valve morphogenesis. Development 139, 3973–3985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fish, J. E. et al. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144, 2428–2444 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wythe, J. D. et al. ETS factors regulate Vegf-dependent arterial specification. Dev. Cell 26, 45–58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abedin, M. J. et al. Fli1 acts downstream of Etv2 to govern cell survival and vascular homeostasis via positive autoregulation. Circ. Res. 114, 1690–1699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pimanda, J. E. et al. Endoglin expression in the endothelium is regulated by Fli-1, Erg, and Elf-1 acting on the promoter and a -8-kb enhancer. Blood 107, 4737–4745 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, Y., Williams, J., Smallwood, P. M. & Nathans, J. Sox7, Sox17, and Sox18 cooperatively regulate vascular development in the mouse retina. PLoS ONE 10, e0143650 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chiang, I. K. et al. Correction: SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development 144, 3847–3848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, S. H. et al. Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ. Res. 115, 215–226 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).

    Article  PubMed  Google Scholar 

  51. Yao, Y., Yao, J. & Bostrom, K. I. SOX transcription factors in endothelial differentiation and endothelial–mesenchymal transitions. Front. Cardiovasc. Med. 6, 30 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao, J. et al. Elevated endothelial Sox2 causes lumen disruption and cerebral arteriovenous malformations. J. Clin. Invest. 129, 3121–3133 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rudnicki, M. et al. Endothelial-specific FoxO1 depletion prevents obesity-related disorders by increasing vascular metabolism and growth. eLife 7, e39780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stenman, J. M. et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Liebner, S. et al. Wnt/beta–catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183, 409–417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daneman, R. et al. Wnt/beta–catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl Acad. Sci. USA 106, 641–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hupe, M. et al. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci. Signal. 10, eaag2476 (2017).

    Article  PubMed  Google Scholar 

  61. Reyahi, A. et al. Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood–brain barrier. Dev. Cell 34, 19–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Fan, C. et al. Novel roles of GATA1 in regulation of angiogenic factor AGGF1 and endothelial cell function. J. Biol. Chem. 284, 23331–23343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castano, J. et al. GATA2 promotes hematopoietic development and represses cardiac differentiation of human mesoderm. Stem Cell Reports 13, 515–529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607–3618 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Lepore, J. J. et al. GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J. Clin. Invest. 116, 929–939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nadeau, M. et al. An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation. Proc. Natl Acad. Sci. USA 107, 19356–19361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geraud, C. et al. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J. Clin. Invest. 127, 1099–1114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhao, R. et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol. Cell. Biol. 25, 2622–2631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de la Pompa, J. L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186 (1998).

    Article  PubMed  Google Scholar 

  70. Ranger, A. M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Zeini, M. et al. Spatial and temporal regulation of coronary vessel formation by calcineurin–NFAT signaling. Development 136, 3335–3345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Graef, I. A., Chen, F., Chen, L., Kuo, A. & Crabtree, G. R. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105, 863–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Sugiaman-Trapman, D. et al. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 19, 181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Duan, Q. et al. Deregulation of XBP1 expression contributes to myocardial vascular endothelial growth factor-A expression and angiogenesis during cardiac hypertrophy in vivo. Aging Cell 15, 625–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schilham, M. W. et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380, 711–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, Y. & Cvekl, A. Large Maf transcription factors: cousins of AP-1 proteins and important regulators of cellular differentiation. Einstein J. Biol. Med. 23, 2–11 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jeong, H. W. et al. Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nat. Commun. 8, 726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. de Haan, W. et al. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G803–G815 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gomez-Salinero, J. M. et al. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29, 593–609.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nalecz, K. A. Solute carriers in the blood–brain barier: safety in abundance. Neurochem. Res. 42, 795–809 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Zaragoza, R. Transport of amino acids across the blood–brain barrier. Front. Physiol. 11, 973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Feng, W., Chen, L., Nguyen, P. K., Wu, S. M. & Li, G. Single cell analysis of endothelial cells identified organ-specific molecular signatures and heart-specific cell populations and molecular features. Front. Cardiovasc. Med. 6, 165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Varin, E. M. et al. Circulating levels of soluble dipeptidyl peptidase-4 are dissociated from inflammation and induced by enzymatic DPP4 inhibition. Cell. Metab. 29, 320–334.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Wilson, M. R. et al. Lgr5-positive endothelial progenitor cells occupy a tumor and injury prone niche in the kidney vasa recta. Stem Cell Res. 46, 101849 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Sabbagh, M. F. et al. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 7, e36187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol. 3, a004960 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lam, T. I., Wise, P. M. & O’Donnell, M. E. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. Am. J. Physiol. Cell. Physiol. 297, C278–C289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weksler, B., Romero, I. A. & Couraud, P. O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Carl, S. M. et al. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood–brain barrier cell line, hCMEC/D3 [corrected]. Mol. Pharm. 7, 1057–1068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohtsuki, S. et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol. Pharm. 10, 289–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Urich, E., Lazic, S. E., Molnos, J., Wells, I. & Freskgard, P. O. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood–brain barrier models. PLoS ONE 7, e38149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xia, J. et al. E-cadherin-mediated contact of endothelial progenitor cells with mesenchymal stem cells through beta-catenin signaling. Cell Biol. Int. 40, 407–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Nayak, G. et al. Developmental vascular regression is regulated by a Wnt/beta-catenin, MYC and CDKN1A pathway that controls cell proliferation and cell death. Development 145, dev.154898 (2018).

    Article  Google Scholar 

  96. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, Y.-T. & Chao, C. C. K. Identification of the β-catenin/JNK/prothymosin-alpha axis as a novel target of sorafenib in hepatocellular carcinoma cells. Oncotarget 6, 38999–39017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bienz, M. β-catenin: a pivot between cell adhesion and Wnt signalling. Curr. Biol. 15, R64–R67 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Brembeck, F. H., Rosario, M. & Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev. 16, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kruse, K. et al. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J. Cell Biol. 218, 299–316 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gerhardt, H., Wolburg, H. & Redies, C. N-cadherin mediates pericytic–endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Soh, B. S. et al. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res. 24, 1420–1432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jho, E. H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vattulainen-Collanus, S. et al. Bone morphogenetic protein signaling is required for RAD51-mediated maintenance of genome integrity in vascular endothelial cells. Commun. Biol. 1, 149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ahmed, K. M., Pandita, R. K., Singh, D. K., Hunt, C. R. & Pandita, T. K. β1-integrin impacts Rad51 stability and DNA double-strand break repair by homologous recombination. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00672-17 (2018).

  107. Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Ayloo, S. et al. Pericyte-to-endothelial cell signaling via vitronectin–integrin regulates blood–CNS barrier. Neuron 110, 1641–1655.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bodary, S. C. & McLean, J. W. The integrin beta 1 subunit associates with the vitronectin receptor alpha v subunit to form a novel vitronectin receptor in a human embryonic kidney cell line. J. Biol. Chem. 265, 5938–5941 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Izawa, Y. et al. β1-integrin–matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J. Cereb. Blood Flow Metab. 38, 641–658 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Kant, R., Halder, S. K., Bix, G. J. & Milner, R. Absence of endothelial α5β1 integrin triggers early onset of experimental autoimmune encephalomyelitis due to reduced vascular remodeling and compromised vascular integrity. Acta. Neuropathol. Commun. 7, 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Williams, J. L., Holman, D. W. & Klein, R. S. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front. Cell. Neurosci. 8, 154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Abramsson, A. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 21, 316–331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial–mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Pellowe, A. S. et al. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB J. 33, 2171–2186 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2020).

  119. Amin, M. A. et al. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ. Res. 93, 321–329 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Kondrychyn, I. et al. Marcksl1 modulates endothelial cell mechanoresponse to haemodynamic forces to control blood vessel shape and size. Nat. Commun. 11, 5476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Benz, F. et al. Low wnt/beta-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 8, e43818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guo, L., Zhang, H., Hou, Y., Wei, T. & Liu, J. Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp. Ther. Med. 12, 1639–1644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wong, B. H. & Silver, D. L. in Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease (ed. Jiang, X.-C.) 223–234 (Springer, 2020).

  124. Akanuma, S., Hirose, S., Tachikawa, M. & Hosoya, K. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS 10, 29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ose, A. et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood–brain barrier. Drug Metab. Dispos. 38, 168–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Mae, M. A. et al. Single-cell analysis of blood–brain barrier response to pericyte loss. Circ. Res. 128, e46–e62 (2021).

    Article  PubMed  Google Scholar 

  127. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schmitt, C. E., Woolls, M. J. & Jin, S. W. Mutant-specific gene expression profiling identifies SRY-related HMG box 11b (SOX11b) as a novel regulator of vascular development in zebrafish. Mol. Cells 35, 166–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Palomero, J. et al. SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood 124, 2235–2247 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Starks, R. R. et al. Transcription factor PLAGL1 is associated with angiogenic gene expression in the placenta. Int. J. Mol. Sci. 21, 8317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Qin, G. et al. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc. Natl Acad. Sci. USA 103, 11015–11020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yoshitomi, Y., Ikeda, T., Saito-Takatsuji, H. & Yonekura, H. Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development. Int. J. Mol. Sci. 22, 2804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Licht, A. H. et al. JunB is required for endothelial cell morphogenesis by regulating core-binding factor beta. J. Cell Biol. 175, 981–991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yanagida, K. et al. Sphingosine 1-phosphate receptor signaling establishes AP-1 gradients to allow for retinal endothelial cell specialization. Dev. Cell 52, 779–793.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cai, Y. et al. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci. Signal. 9, ra40 (2016).

    Article  PubMed  Google Scholar 

  136. Cho, C., Smallwood, P. M. & Nathans, J. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood–brain barrier regulation. Neuron 95, 1221–1225 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Cho, C., Wang, Y., Smallwood, P. M., Williams, J. & Nathans, J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood–retina and blood–brain barriers. eLife 8, e45542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hussain, B. et al. Endothelial β-catenin deficiency causes blood–brain barrier breakdown via enhancing the paracellular and transcellular permeability. Front. Mol. Neurosci. 15, 895429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tran, K. A. et al. Endothelial β-catenin signaling is required for maintaining adult blood–brain barrier integrity and central nervous system homeostasis. Circulation 133, 177–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, Y. et al. Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance. Proc. Natl Acad. Sci. USA 115, E11827–E11836 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, Y. et al. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 8, e43257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhou, Y. et al. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Invest. 124, 3825–3846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, B. et al. Loss of endothelial glucocorticoid receptor promotes angiogenesis via upregulation of Wnt/beta-catenin pathway. Angiogenesis 24, 631–645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Franken, P., Lopez-Molina, L., Marcacci, L., Schibler, U. & Tafti, M. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J. Neurosci. 20, 617–625 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pulido, R. S. et al. Neuronal activity regulates blood–brain barrier efflux transport through endothelial circadian genes. Neuron 108, 937–952.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Herrnberger, L. et al. Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem. Cell Biol. 138, 709–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Orsenigo, F. et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. eLife 9, e61413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, Q. et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat. Commun. 6, 6020 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Saelens, W., Cannoodt, R. & Saeys, Y. A comprehensive evaluation of module detection methods for gene expression data. Nat. Commun. 9, 1090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Palikuqi, B. et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 585, 426–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. de Pater, E. et al. Gata2 is required for HSC generation and survival. J. Exp. Med. 210, 2843–2850 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kang, H. et al. GATA2 is dispensable for specification of hemogenic endothelium but promotes endothelial-to-hematopoietic transition. Stem Cell Reports 11, 197–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. De Val, S. & Black, B. L. Transcriptional control of endothelial cell development. Dev. Cell 16, 180–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Roudnicky, F. et al. Identification of a combination of transcription factors that synergistically increases endothelial cell barrier resistance. Sci. Rep. 10, 3886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hupe, M. et al. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single cell levels. Sci. Signal. 10, eaag2476 (2017).

    Article  PubMed  Google Scholar 

  159. Lopez-Molina, L., Conquet, F., Dubois-Dauphin, M. & Schibler, U. The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16, 6762–6771 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Goodwin, J. E. et al. Endothelial glucocorticoid receptor suppresses atherogenesis—brief report. Arterioscler. Thromb. Vasc. Biol. 35, 779–782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Al Argan, R., Saskin, A., Yang, J. W., D’Agostino, M. D. & Rivera, J. Glucocorticoid resistance syndrome caused by a novel NR3C1 point mutation. Endocr. J. 65, 1139–1146 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4, a007906 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Gerner-Mauro, K. N., Akiyama, H. & Chen, J. Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proc. Natl Acad. Sci. USA 117, 12182–12191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guo, Q. et al. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. eLife 10, e64444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moreira, S. et al. A single TCF transcription factor, regardless of its activation capacity, is sufficient for effective trilineage differentiation of ESCs. Cell Rep. 20, 2424–2438 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).

    Article  Google Scholar 

  170. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Broad Institute Picard Toolkit. GitHub https://github.com/broadinstitute/picard (2019).

  173. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-seq peak data. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf (2011).

  175. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2025).

  177. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Liu, C. et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues. Sci. Data 6, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  181. Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.10.0. GitHub https://github.com/kevinblighe/EnhancedVolcano (2021).

  182. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Patil, A. & Patil, A. CellKb Immune: a manually curated database of mammalian hematopoietic marker gene sets for rapid cell type identification. Preprint at bioRxiv https://doi.org/10.1101/2020.12.01.389890 (2022).

  187. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Baek, S. H. et al. Single cell transcriptomic analysis reveals organ specific pericyte markers and identities. Front. Cardiovasc. Med. 9, 876591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ovcharenko, I., Nobrega, M. A., Loots, G. G. & Stubbs, L. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res. 32, W280–W286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Loots, G. G. & Ovcharenko, I. rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res. 32, W217–W221 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gillespie, W. et al. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. Preprint at bioRxiv https://doi.org/10.1101/2024.07.13.603267 (2024).

  195. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-{\Delta\Delta}C_{\rm{T}}}\) method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Wythe, J. & Martin, J. F. Single cell RNA-seq data from Cantu Gutierrez, M.E. and Hill, M.C. et al., Nature Cardiovascular Research, 2025. figshare https://doi.org/10.6084/m9.figshare.28266635 (2025).

Download references

Acknowledgements

We thank J. Fish (University Health Network, Toronto, Canada) for critical comments on the paper and K. Berman de Ruiz (Baylor College of Medicine, Houston, Texas) and A. Herman (Baylor College of Medicine, Houston, Texas) for assistance with mouse husbandry and organ isolation. This study was supported by grants from the National Institutes of Health (HL127717, HL130804 and HL118761, J.F.M.; HL159159, J.D.W.; F31 HL136065, M.C.H.; T32 HL-007284, G.E.L.); the Vivian L. Smith Foundation (J.F.M.); the American Heart Association (19PRE34410104, M.E.C.G.; 16GRNT31330023, J.D.W.); the Caroline Wiess Law Fund, the Curtis Hankamer Basic Research Fund and the ARCO Foundation Young Teacher-Investigator Award (J.D.W.); the Cancer Research and Prevention Institute of Texas (RP200402) (J.D.W.); and institutional startup funds from the CVRI at Baylor College of Medicine (J.D.W.) and from the University of Virginia School of Medicine (J.D.W.). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

M.E.C.G., M.C.H. and J.D.W. were responsible for the conception, design, execution and interpretation of the experiments. M.E.C.G. and J.D.W. wrote the original draft. G.E.L. and W.B.G. were involved in the design, execution and analysis of the experiments. J.F.M. contributed reagents and resources, supervised M.C.H., interpreted the experiments and edited the paper. All authors revised the paper and consented to its contents.

Corresponding author

Correspondence to Joshua D. Wythe.

Ethics declarations

Competing interests

J.F.M. is a cofounder of and owns shares in Yap Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Kristy Red Horse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Lymphatic marker expression in RNA-Seq and ATAC-Seq.

a) Expression levels of endothelial markers (top) and lymphatic markers (bottom) as determined by RNA-Sequencing of adult endothelial and input samples (normalized expression). b) Genome browser tracks of lymphatic markers in all ATAC-seq tissue samples reveals no substantial difference in genome accessibility at loci for lymphatic markers between input and endothelial enriched samples.

Extended Data Fig. 2 Transcription factor expression and motif presence across all organs.

a) Expression levels of common transcription factors (related to Fig. 2) across the adult endothelium (normalized expression). b) Enriched motifs identified by HOMER (one-tailed Fisher’s exact test) from all organs, with all timepoints condensed into one sample per organ. Size of the bubble and the color represent the p-value. The top 50 motifs are shown (values represent the -log10 of the p-value). c) Expression levels of enriched transcription factors across the adult endothelium (normalized expression).

Extended Data Fig. 3 Chromatin Accessibility Changes Across Time in the Heart Endothelium.

a) Differential chromatin accessibility determined by ATAC-Seq peaks in the heart endothelium (11,079 peaks) at E12.5, postnatal day 6 (P6) and adult (2-month-old) mice. b) Biological processes from expressed genes and with accessible chromatin in each timepoint. c) Top 10 transcription factor motifs ranked by gene expression for each age. Log2 expression over input indicated in the y-axis. Motif enrichment p-value (one-tailed Fisher’s exact test) is shown according to the dot size.

Extended Data Fig. 4 Chromatin Accessibility Changes Across Time in the Liver Endothelium.

a) Differential chromatin accessibility determined by ATAC-Seq peaks in the liver endothelium (8,666 peaks) at E12.5, postnatal day 6 (P6) and adult (2-month-old) mice. b) Biological processes from expressed genes and with accessible chromatin in each timepoint. c) Top 10 transcription factor motifs ranked by gene expression for each age. Log2 expression over input indicated in the y-axis. Motif enrichment p-value (one-tailed Fisher’s exact test) is shown according to the dot size.

Extended Data Fig. 5 Chromatin Accessibility Changes Across Time in the Lung Endothelium.

a) Differential chromatin accessibility determined by ATAC-Seq peaks in the lung endothelium (1,731 peaks) at E12.5, postnatal day 6 (P6) and adult (2-month-old) mice. b) Biological processes from expressed genes and with accessible chromatin in each timepoint. c) Top 10 transcription factor motifs ranked by gene expression for each age. Log2 expression over input indicated in the y-axis. Motif enrichment p-value (one-tailed Fisher’s exact test) is shown according to the dot size.

Extended Data Fig. 6 Chromatin Accessibility Changes Across Time in the Kidney Endothelium.

a) Differential chromatin accessibility determined by ATAC-Seq peaks in the kidney endothelium (3,035 peaks) at E12.5, postnatal day 6 (P6) and adult (2-month-old) mice. b) Biological processes from expressed genes and with accessible chromatin in each timepoint. c) Top 10 transcription factor motifs ranked by gene expression for each age. Log2 expression over input indicated in the y-axis. Motif enrichment p-value (one-tailed Fisher’s exact test) is shown according to the dot size.

Extended Data Fig. 7 Novel potential gene regulatory elements in organ specific transcription factors.

Genome browser tracks from ATAC-seq data highlight transcription factor DNA-binding motifs in accessible chromatin regions enriched in endothelial samples from the mouse (a) brain, (b) heart and (c) liver. Motifs present and their location are highlighted in black, while the genomic loci are indicated below each panel in blue (boxes represent exons, arrows indicate the direction of transcription).

Extended Data Fig. 8 Cell to Cell Communication Changes in the Neurovascular Unit Over Time.

a) Schematic representation of the harvesting and isolation of endothelial cells from E9.5, E12.5, E16.5, P8 and adult mice. Cells were purified using Magnetic Isolation Cells Sorting (MACS) and processed for downstream sequencing and analysis following the 10x Genomics protocol. b) UMAP of cells clustered by collection timepoint. c) UMAP of cells with the identity of each cluster indicated. d) Feature plot showing expression of the endothelial marker Cdh5 (encodes VE-Cadherin) superimposed on the UMAP to identity endothelial cells (normalized expression values). e) Circos plot of differentially expressed ligands in non-EC cells within our dataset, as well as their target genes expressed in the CNS endothelium between E9.5 and Adult. f) Unbiased analysis of top predicted interactions of differentially expressed ligands and receptors between ECs and pericytes in E9.5 and adult using the Cell-Cell Interactions (CCInx using adjusted p-value, and average log2 fold change). Wilcoxon rank sum test, two-sided P-value.

Extended Data Fig. 9 Differential gene expression in endothelial cells across time.

a) UMAP of only endothelial cells (from Fig. 6) colored coded by timepoint and clustered using Monocle 3 to show maturation across time. b) Feature plots denoting normalized expression of endothelial marker genes, Pecam1 and Cdh5, and canonical lymphatic marker genes, Lyve1 and Prox1, demonstrate the preferential enrichment of blood endothelial cell transcriptomes rather than lymphatic endothelial transcriptomes. c) Heatmap of differential gene expression analysis of single cell RNA-seq results from brain endothelial cells profiled across developmental time (row z-score). Genes in red have a known role in blood brain barrier function. The top 10 differentially expressed genes for each time point are shown, followed by the pan-endothelial transcripts Pecam1, Cldn5 and Kdr (normalized expression). d) Expression of BBB-related genes over developmental time.

Extended Data Fig. 10 Gene Ontology analysis of endothelial maturation within the mouse brain.

The differentially expressed gene signatures from the single cell endothelial subtypes of the developing and adult mouse brain that were used for pseudotime analysis by Moncole3 were processed for Gene Ontology analysis. The heatmap reflects which pathways and processes are upregulated in each of the unique endothelial cell subtypes (values represent the -log10 of the p-value). Colored by significance of pathway enrichment (2-sided p-value).

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–49.

Supplementary Data 1

TEER data and Transwell leak data (related to Supplementary Fig. 2).

Supplementary Data 2

qRT–PCR data (related to Supplementary Fig. 3).

Source data

Source Data Fig. 6

Raw and uncropped imaging data for Fig. 6.

Source Data Fig. 7

Raw and uncropped imaging data for Fig. 7.

Source Data Fig. 8

Raw and uncropped imaging data for Fig. 8.

Source Data Fig. 8

Raw TEER, Transwell and qRT–PCR statistical data for Fig. 8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantu Gutierrez, M.E., Hill, M.C., Largoza, G.E. et al. Mapping the transcriptional and epigenetic landscape of organotypic endothelial diversity in the developing and adult mouse. Nat Cardiovasc Res 4, 473–495 (2025). https://doi.org/10.1038/s44161-025-00618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44161-025-00618-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing