Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing glucocorticoid receptor antagonism to enhance the efficacy of cardiac regenerative growth factors and cytokines

Abstract

Myocardial injuries lead to cardiomyocyte loss and heart failure. Endogenous glucocorticoids, via the glucocorticoid receptor (GR), limit cardiomyocyte regeneration. Here we show that glucocorticoids suppress mammalian (murine) cardiomyocyte proliferative response to regenerative growth factors and cytokines. GR activation in neonatal cardiomyocytes upregulated MAPK–ERK inhibitors ERRFI1 and DUSP1. Using neuregulin 1 as a model, we demonstrated that glucocorticoids inhibit growth-factor-induced ERK activation, nuclear translocation and transcriptional output. Errfi1 and Dusp1 knockdown restored growth-factor-induced proliferation of glucocorticoid-exposed cardiomyocytes. Cardiac expression of DUSP1 and ERRFI1 increased postnatally, coinciding with regenerative capacity decline. In juvenile and adult cardiomyocytes, regenerative growth factors failed to induce the MAPK–ERK pathway and proliferation; however, DUSP1 inhibition restored these responses. GR antagonism enhanced growth-factor-induced cardiomyocyte protection, proliferation and cardiac function after adult myocardial injury. These findings reveal the emergence of a postnatal systemic brake on cardiomyocyte proliferative response to growth factors and support GR inhibition as a strategy to enhance growth-factor-based regenerative therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucocorticoids suppress the mitogenic activity of cardiac regenerative growth factors and cytokines.
Fig. 2: Glucocorticoids trigger the expression of negative regulators of MAPK-signaling pathway via GR activation.
Fig. 3: Glucocorticoids intercept growth-factor-induced MAPK–ERK signaling activation in cardiomyocytes.
Fig. 4: Increased glucocorticoid-induced DUSP1 and ERRFI1 expression in early postnatal development impairs the mitogenic potential of regenerative factors.
Fig. 5: Inhibition of the glucocorticoid–GR axis rescues the mitogenic potential of regenerative factors in postmitotic cardiomyocytes.
Fig. 6: GR antagonism enhances growth factor-induced cardiomyocyte protection and cell-cycle re-entry as well as heart functional preservation after cardiac damage.
Fig. 7: Schematic diagram of the impact of glucocorticoids on MAPK–ERK signaling cascade activation by growth factor or cytokine signaling in cardiomyocyte protection and regeneration.

Similar content being viewed by others

Data availability

The datasets and uncropped scans of figures and extended data generated in this study are available as source data files. RNA-seq data generated in this study (Fig. 2a,b and Supplementary Table 3) were deposited in the Gene Expression Omnibus repository under accession nos. GSE286562 (controls in GSE202968). Published RNA-seq data analyzed in Extended Data Fig. 5d–f are available in the Gene Expression Omnibus repository under accession no. GSE144391 (ref. 68). Published RNA-seq data analyzed in Fig. 4b are available as supplementary information in the original paper69. Source data are provided with this paper.

References

  1. Martin, S. S. et al. 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation 149, e347–e913 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Secco, I. & Giacca, M. Regulation of endogenous cardiomyocyte proliferation: the known unknowns. J. Mol. Cell Cardiol. 179, 80–89 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whelan, R. S., Kaplinskiy, V. & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol. 72, 19–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chiong, M. et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2, e244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kytö, V. et al. Apoptotic cardiomyocyte death in fatal myocarditis. Am. J. Cardiol. 94, 746–750 (2004).

    Article  PubMed  Google Scholar 

  6. Zhang, Y.-W., Shi, J., Li, Y.-J. & Wei, L. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. 57, 435–445 (2009).

    Article  CAS  Google Scholar 

  7. Octavia, Y. et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell Cardiol. 52, 1213–1225 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. González, A. et al. Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc. Res. 59, 549–562 (2003).

    Article  PubMed  Google Scholar 

  9. Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984–991 (2003).

    Article  PubMed  Google Scholar 

  10. Yamaji, K. et al. Apoptotic myocardial cell death in the setting of arrhythmogenic right ventricular cardiomyopathy. Acta Cardiol. 60, 465–470 (2005).

    Article  PubMed  Google Scholar 

  11. Hashem, S. I. et al. Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 33, 2343–2350 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bongiovanni, C. et al. Reawakening the intrinsic cardiac regenerative potential: molecular strategies to boost dedifferentiation and proliferation of endogenous cardiomyocytes. Front. Cardiovasc. Med. 8, 750604 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tzahor, E. & Poss, K. D. Cardiac regeneration strategies: staying young at heart. Science 356, 1035–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadek, H. & Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell 26, 7–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Berlo, J. H. & Molkentin, J. D. An emerging consensus on cardiac regeneration. Nat. Med. 20, 1386–1393 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uygur, A. & Lee, R. T. Mechanisms of cardiac regeneration. Dev. Cell 36, 362–374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  PubMed  Google Scholar 

  21. Polizzotti, B. D. et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci. Transl. Med. 7, 281ra45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Uva, G. & Tzahor, E. The key roles of ERBB2 in cardiac regeneration. Cell Cycle 14, 2383–2384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gao, R. et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Jabbour, A. et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur. J. Heart Fail. 13, 83–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Lenihan, D. J. et al. A phase I, single ascending dose study of cimaglermin alfa (Neuregulin 1β3) in patients with systolic dysfunction and heart failure. JACC Basic Transl. Sci. 1, 576–586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Engel, F. B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175–1187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546–15551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Novoyatleva, T. et al. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J. 28, 2492–2503 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Shen, H. et al. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. eLife 9, e53071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schuetz, T. et al. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci. Rep. 14, 22661 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sundgren, N. C. et al. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1481–R1489 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl. Res. 7, 232–241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bongiovanni, C. et al. BMP7 promotes cardiomyocyte regeneration in zebrafish and adult mice. Cell Rep. 43, 114162 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Vasudevarao, M. D. et al. BMP signaling promotes zebrafish heart regeneration via alleviation of replication stress. Nat. Commun. 16, 1708 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 142, 967–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zou, Y. et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 108, 748–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Negoro, S. et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 103, 555–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ock, S. et al. Receptor activator of nuclear factor-κB ligand is a novel inducer of myocardial inflammation. Cardiovasc. Res. 94, 105–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Tang, P. et al. Effect of interleukin-6 on myocardial regeneration in mice after cardiac injury. Biomed. Pharmacother. 106, 303–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 25, 1137–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zogbi, C. et al. Beneficial effects of IL-4 and IL-6 on rat neonatal target cardiac cells. Sci. Rep. 10, 12350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fahmi, A. et al. p42/p44-MAPK and PI3K are sufficient for IL-6 family cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell Signal. 25, 898–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wodsedalek, D. J. et al. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. Am. J. Physiol. Heart Circ. Physiol. 316, H24–H34 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Paddock, S. J. et al. IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity. J. Mol. Cell Cardiol. 161, 62–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palmer, J. N., Hartogensis, W. E., Patten, M., Fortuin, F. D. & Long, C. S. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J. Clin. Invest. 95, 2555–2564 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Przybyt, E., Krenning, G., Brinker, M. G. L. & Harmsen, M. C. Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. J. Transl. Med. 11, 39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pianca, N. et al. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. Nat. Cardiovasc. Res. 1, 617–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. D’Uva, G. & Lauriola, M. Towards the emerging crosstalk: ERBB family and steroid hormones. Semin. Cell Dev. Biol. 50, 143–152 (2016).

    Article  PubMed  Google Scholar 

  51. Lauriola, M. et al. Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment. Nat. Commun. 5, 5073 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Hattori, F. et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7, 61–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo, S. et al. Chronic corticosterone exposure suppresses copper transport through GR-mediated intestinal CTR1 pathway in mice. Biology 12, 197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo, Y. & Pu, W. T. Cardiomyocyte maturation: new phase in development. Circ. Res. 126, 1086–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Segatto, O., Anastasi, S. & Alemà, S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J. Cell Sci. 124, 1785–1793 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Keyse, S. M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27, 253–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42714–42721 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Kassel, O. et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20, 7108–7116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, H.-F., Chuang, H.-C. & Tan, T.-H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci. 20, 2668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Plotnikov, A. et al. The nuclear translocation of ERK1/2 as an anticancer target. Nat. Commun. 6, 6685 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Michailovici, I. et al. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development 141, 2611–2620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, L. et al. Egr1 regulates regenerative senescence and cardiac repair. Nat. Cardiovasc. Res. 3, 915–932 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Beisaw, A. et al. AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during zebrafish heart regeneration. Circ. Res. 126, 1760–1778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4, 966–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Curigliano, G. et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J. Clin. 66, 309–325 (2016).

    PubMed  Google Scholar 

  71. Morelli, M. B. et al. Cardiotoxicity of anticancer drugs: molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 9, 847012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cardinale, D. et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131, 1981–1988 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    Article  PubMed  Google Scholar 

  74. Linders, A. N. et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging 10, 9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, Y. A. et al. Doxorubicin-induced heart failure in cancer patients: a cohort study based on the Korean National Health Insurance Database. Cancer Med. 7, 6084–6092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mitry, M. A. & Edwards, J. G. Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 10, 17–24 (2016).

    PubMed  Google Scholar 

  77. Swain, S. M., Whaley, F. S. & Ewer, M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97, 2869–2879 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Ghigo, A., Li, M. & Hirsch, E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta 1863, 1916–1925 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Willis, M. S. et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 12, e005234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, D.-S., Yan, J. & Yang, P.-Z. Cardiomyocyte atrophy, an underestimated contributor in doxorubicin-induced cardiotoxicity. Front. Cardiovasc Med. 9, 812578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, M. et al. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation 138, 696–711 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Fabiani, I., Chianca, M., Cipolla, C. M. & Cardinale, D. M. Anthracycline-induced cardiomyopathy: risk prediction, prevention and treatment. Nat. Rev. Cardiol. 22, 551–563 (2025).

    Article  PubMed  Google Scholar 

  83. Kamphuis, J. A. M. et al. Early- and late anthracycline-induced cardiac dysfunction: echocardiographic characterization and response to heart failure therapy. Cardiooncology 6, 23 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Strash, N. et al. Human Erbb2-induced Erk activity robustly stimulates cycling and functional remodeling of rat and human cardiomyocytes. eLife 10, e65512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Anastasi, S., Lamberti, D., Alemà, S. & Segatto, O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin. Cell Dev. Biol. 50, 115–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Zhong, H. et al. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: implications for targeted esophageal cancer therapy. Biochimie 190, 132–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Shaul, Y. D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458–1464 (2009).

    Article  Google Scholar 

  89. Tomasso, A., Koopmans, T., Lijnzaad, P., Bartscherer, K. & Seifert, A. W. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice (Acomys). Sci. Adv. 9, eadf2331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yun, M. H., Gates, P. B. & Brockes, J. P. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts. Stem Cell Rep. 3, 15–23 (2014).

    Article  CAS  Google Scholar 

  91. Missinato, M. A. et al. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 145, dev157206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shakked, A. et al. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury. Nat. Cardiovasc. Res. 2, 383–398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, X. et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J. Am. Coll. Cardiol. 48, 1438–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Odiete, O., Hill, M. F. & Sawyer, D. B. Neuregulin in cardiovascular development and disease. Circ. Res. 111, 1376–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Keulenaer, G. W. et al. Mechanisms of the multitasking endothelial protein NRG-1 as a compensatory factor during chronic heart failure. Circ. Heart Fail. 12, e006288 (2019).

    Article  PubMed  Google Scholar 

  96. Gu, X. et al. Cardiac functional improvement in rats with myocardial infarction by up-regulating cardiac myosin light chain kinase with neuregulin. Cardiovasc. Res. 88, 334–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Bian, Y. et al. Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am. J. Physiol. Heart Circ. Physiol. 297, H1974–H1983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Galindo, C. L., Ryzhov, S. & Sawyer, D. B. Neuregulin as a heart failure therapy and mediator of reverse remodeling. Curr. Heart Fail. Rep. 11, 40–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Simone, A. et al. Control of osteoblast regeneration by a train of Erk activity waves. Nature 590, 129–133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wen, X., Jiao, L. & Tan, H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci. 23, 1464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao, C. & Xiong, J.-W. ERK signaling waves via body-wall muscles guide planarian whole-body regeneration across long distances. Cell Regen. 12, 36 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, X.-S. et al. ERK-activated CK-2 triggers blastema formation during appendage regeneration. Sci. Adv. 10, eadk8331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, P. et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 24, 1091–1107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, P. & Zhong, T. P. MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol. Lett. 39, 1069–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Ohashi, A. et al. Axolotl liver regeneration is accomplished via compensatory congestion mechanisms regulated by ERK signaling after partial hepatectomy. Dev. Dyn. 250, 838–851 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Duprey-Díaz, M. V., Blagburn, J. M. & Blanco, R. E. Exogenous modulation of retinoic acid signaling affects adult rgc survival in the frog visual system after optic nerve injury. PLoS ONE 11, e0162626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yasumuro, H., Sakurai, K., Toyama, F., Maruo, F. & Chiba, C. Implications of a multi-step trigger of retinal regeneration in the adult newt. Biomedicines 5, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Suzuki, M., Satoh, A., Ide, H. & Tamura, K. Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Dev. Biol. 304, 675–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Blassberg, R. A., Garza-Garcia, A., Janmohamed, A., Gates, P. B. & Brockes, J. P. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J. Cell Sci. 124, 47–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Fan, Y. et al. Ultrafast distant wound response is essential for whole-body regeneration. Cell 186, 3606–3618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hachemi, Y. et al. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J. Mol. Endocrinol. 61, R75–R90 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kyritsis, N. et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353–1356 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Bongiovanni, C. et al. Protocol for isolating and culturing neonatal murine cardiomyocytes. STAR Protoc. 5, 103461 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Omatsu-Kanbe, M., Yoshioka, K., Fukunaga, R., Sagawa, H. & Matsuura, H. A simple antegrade perfusion method for isolating viable single cardiomyocytes from neonatal to aged mice. Physiol. Rep. 6, e13688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ackers-Johnson, M. et al. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ. Res. 119, 909–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tholen, S. et al. Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Rep. 39, 111018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chung, S. et al. Cooperative roles of the suprachiasmatic nucleus central clock and the adrenal clock in controlling circadian glucocorticoid rhythm. Sci. Rep. 7, 46404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support under the National Recovery and Resilience Plan, Mission 4, Component 2, Investment 1.1, Call for tender no. 1409 published on 14 September 2022 by the Italian Ministry of University and Research (MUR), funded by the European Union (EU)—NextGenerationEU—Project ‘The cardiomyocyte-intrinsic role of the glucocorticoid receptor in cardiac aging’, CUP J53D23018140001 grant assignment decree no. 1369 adopted on 1 September 2023 by the MUR to G.D'U. The research was also supported by the EU’s Horizon 2020 research and innovation program under the ERA-NET on the Cardiovascular Diseases co-fund action to G.D'U. and E.T. (grant no. JCT2016-40-080), Fondazione Carisbo to G.D'U. (grant no. 2023.0210) and by the Italian Ministry of Health (grant no. RC24000858-2795994 ex 2790614 to G.D'U.). The views and opinions expressed are those of the authors only and do not necessarily reflect those of the EU or the European Commission. Neither the EU nor the European Commission can be responsible for them. S.D.P. was supported by a PON Research and Innovation 2014–2020 (FSE React-EU) PhD Scholarship (code no. DOT1303972—CUP J35F21003360006) funded by the MUR under DM 1061/2021, Action IV.4 ‘Doctorates and Research Contracts on Innovation Topics’. E.T. was supported by the European Research Council (ERC AdG, grant no. 788194). C. Batho and R.D. were funded by the British Heart Foundation (grant nos. G114642 and GBP0051 to C.W.). We thank the Centre for Applied Biomedical Research, University of Bologna for technical support.

Author information

Authors and Affiliations

Authors

Contributions

S.D.P., S.B. and G.D’U. conceived and designed the experiments. S.D.P. and S.B. carried out most of the experiments and analyzed the data. S.D.P. and S.B. performed in vivo experiments. S.B. performed echocardiographic analysis. C.M., F.S., C. Bongiovanni, I.D.B., A.A. and N.P. performed immunofluorescence and gene expression analyses. R.T. performed in vitro immunofluorescence image acquisition and time-lapse imaging. S.D.P., S.B. and G.D’U. analyzed RNA-seq data. C. Batho and R.D. designed and synthesized modRNAs. C.V., M.L., E.T. and C.H.W. supervised the experiments performed by their laboratory members. G.D’U. conceptualized the study and supervised the entire project. S.D.P., S.B. and G.D’U. wrote the paper, with editing contributions from all authors.

Corresponding author

Correspondence to Gabriele D’Uva.

Ethics declarations

Competing interests

G.D’U., E.T. and A.A. are listed as co-inventors on a patent related to ERBB2-mediated cardiac regeneration (no. US20160326250A1). The other authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Richard Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Representative images showing cardiomyocyte proliferation after in vitro treatment with regenerative growth factors, as determined by BrdU incorporation assay.

Cardiomyocytes were identified by cardiac Troponin I (cTnI) staining and analysed by immunofluorescence for DNA synthesis (BrdU incorporation assay). White arrows point to proliferating cardiomyocytes; scale bars 50 μm.

Extended Data Fig. 2 Corticosterone impairs phenotypic changes induced by caERBB2 expression.

(a) Analysis of the efficacy of lipofectamine-mediated modRNA transfection of postnatal day 1 (P1) cardiomyocytes cultured in vitro. Cardiomyocytes were identified by cardiac Troponin T (cTnT) staining and transfection was assessed through eGFP expression 24 h after modRNA delivery. A representative figure is provided; scale bar 50 μm; (b-c) Subdivision of Ki67+ postnatal day 1 cardiomyocytes analysed in Fig. 1g into mononucleated (b) and binucleated (c) cells; (d-e) Analysis of area (d) and Troponin T intensity (e) of postnatal day 1 (P1) cardiomyocytes cultured in vitro and transfected for 48 h with a modRNA encoding a constitutively active isoform of ERBB2 (caERBB2) together with corticosterone (CORT, 10−8 M). Cardiomyocytes were identified by cardiac Troponin T (cTnT) staining. Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. The values are presented as mean (error bars show standard deviation), statistical significance was determined using one-way ANOVA followed by Sidak’s test in (b), (c), (d), and (e) (comparison between pairs of treatments).

Source data

Extended Data Fig. 3 Analysis of hypertrophic changes in cardiomyocytes following in vivo administration of corticosterone in early postnatal life.

(a-i) RT-qPCR analysis of mRNA expression of (a) Myh7, (b) Myh6, (c) Tnni1, (d) Tnni3, (e) Myh7/Myh6, (f) Tnni1/Tnni3, (g) Acta1, (h) Nppa, and (i) Nppb in mouse postnatal day 2-3 (P2-3) heart lysates following in vivo delivery of water-soluble corticosterone-HBC complex (100 µg/ml) in the drinking water of the lactating mother from postnatal day 0–1 to postnatal day 2–3, for a total of 48 h; (j) Cardiomyocyte cross-sectional area evaluation by immunofluorescence analysis of WGA in heart sections of mice at postnatal day 2–3 following in vivo delivery of water-soluble corticosterone-HBC complex (100 µg/ml) in the drinking water of the lactating mother from postnatal day 0–1 to postnatal day 2–3, for a total of 48 h. Representative images are provided. Dashed outlines highlight cross-sectional areas of transversely aligned cardiomyocytes. Scale bars, 30 μm. Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. The values are presented as mean (error bars show standard deviation), statistical significance was determined using two-sided Student’s t-test in (a) (95% CI: -0.7725 to -0.3350), (b) (95% CI: -0.1838 to 0.1447), (c) (95% CI: -0.3339 to -0.005125), (d) (95% CI: -0.05248 to 0.2029), (e) (95% CI: -0.7746 to -0.3126), (f) (95% CI: -0.4603 to -0.03509), (g) (95% CI: 0.4683 to 1.389), (h) (95% CI: -0.04992 to 1.751), (i) (95% CI: -0.2244 to 0.9094), and (j) (95% CI: -4.281 to 1.119).

Source data

Extended Data Fig. 4 In vitro analysis of the efficacy of Errfi1 and Dusp1 gene knockdown in neonatal cardiomyocyte cultures.

(a-b) mRNA expression levels of (a) Errfi1 and (b) Dusp1 in cultured postnatal day 1 (P1) cardiomyocytes following siRNA delivery for 48 h. A pool of non-targeting scramble siRNAs (siSCR) was used as a negative transfection control; (c) Protein expression levels of ERRFI1 and DUSP1 from cultured postnatal day 1 (P1) cardiomyocytes following siRNA delivery for 72 h. A pool of non-targeting scramble siRNAs (siSCR) was used as a negative transfection control; (d) Schematic illustration of experimental set-up in Fig. 3b and Fig. 3d, e. Time-course experiments were performed in whole-cell protein and RNA lysates, with corticosterone administered 6 h before NRG1 treatment for 30, 60, and 120 min. Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. In all panels, numerical data are presented as mean (error bars show standard deviation). Statistical significance was determined using two-sided Student’s t-test in (a) (95% CI: -0.8423 to -0.2226) and (b) (95% CI: -0.7860 to -0.02741 for siDUSP1).

Source data

Extended Data Fig. 5 Activation of NRG1/ERBB2 signalling leads to the expression of IEGs in cardiomyocytes.

(a-c) RT-qPCR analysis of IEGs (Immediate Early Genes), namely (a) Fos, (b) Junb, and (c) Egr1, upon treatment with NRG1 (100 ng/ml) for 30, 60 and 120 min. (d-f) Analysis of (d) Fos, (e) Junb and (f) Egr1 expression from RNA-sequencing data of cardiac tissue of a mouse model with cardiomyocyte-restricted overexpression of a constitutively active ERBB2 (caERBB2) isoform (Aharonov et al.68). Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. In all panels, numerical data are presented as mean (error bars show standard deviation). Statistical significance was determined by one way ANOVA followed by Tukey’s test in (a-c) and by two-sided Student’s t-test in (d) (95% CI: 30.90 to 248.8), (e) (95% CI: 267.4 to 779.7) and (f) (95% CI: 1618 to 3970).

Source data

Extended Data Fig. 6 Dusp1 knockdown abolishes the ability of corticosterone to repress the proliferative potential of BMP7, FGF1 and OSM.

Analysis of cell proliferation by BrdU assay in neonatal (postnatal day 1 - P1) cardiomyocytes cultured in vitro following knock-down of Dusp1 for 48 h with/without subsequent stimulation with BMP7, FGF1 or OSM (10 ng/ml), and/or CORT (10−8 M). A pool of non-targeting scramble siRNAs (siSCR) was used as a negative transfection control. Cardiomyocytes were identified by cTnI staining and analysed by immunofluorescence for DNA synthesis (BrdU incorporation assay). Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. The values are presented as mean (error bars show standard deviation), statistical significance was determined using one-way ANOVA followed by Sidak’s test (comparison between pairs of treatments).

Source data

Extended Data Fig. 7 Glucocorticoid receptor antagonism does not increase the mitogenic activity of NRG1 in postnatal day 1 cardiomyocytes.

Analysis of cell proliferation by BrdU assay in neonatal (postnatal day 1 - P1) cardiomyocytes cultured in vitro following stimulation with GR antagonist RU486 (10−7 M), alone or in combination with NRG1 (100 ng/ml). Cardiomyocytes were identified by cTnI staining and analysed by immunofluorescence for DNA synthesis (BrdU incorporation assay). Representative pictures are provided; arrows point at proliferating cardiomyocyte; scale bars 50 mm. Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. The values are presented as mean (error bars show standard deviation), statistical significance was determined using one-way ANOVA followed by Sidak’s test (comparison between pairs of treatments).

Source data

Extended Data Fig. 8 Absence of overt cardiomyocyte apoptosis after three weeks of doxorubicin administration.

Analysis of caspase-3 activation (cleaved caspase-3) in heart sections from untreated control animals and from doxorubicin (DOXO)-treated animals, analyzed 21 days after the first DOXO administration. Cardiomyocytes were identified by cardiac Troponin T (cTnT) staining. Representative confocal pictures are provided; scale bars 50 μm.

Extended Data Fig. 9 Echocardiographic evaluation of additional morphological parameters of the in vivo mouse model of anthracycline-induced cardiotoxicity.

Analysis of (a) left ventricular anterior wall thickness at systole (LVAWs), (b) left ventricular end-systolic volume (LVESV), and (c) left ventricular end-diastolic volume (LVEDV) in adult mice at baseline and treated with doxorubicin (DOXO) alone or co-treated with NRG1, RU486, or NRG1 + RU486, 21 days after first DOXO injection. Details on the number of replicates and experiments for each panel are provided in Supplementary Table 2. The values are presented as mean (error bars show standard deviation), statistical significance was determined using one-way ANOVA followed by Sidak’s test in all panels (comparison between pairs of treatments).

Source data

Supplementary information

Reporting Summary

Supplementary Video 1

Time-lapse imaging of cardiomyocyte division after TMRE staining.

Supplementary Tables

Supplementary Table 1 Open reading frame (ORF), T7 promoter and poly(A) tail sequences used for modRNA synthesis. Supplementary Table 2 Details on the number of replicates and independent experiments for each panel shown in the manuscript. Supplementary Table 3 List of GR target genes in cardiomyocytes. List of significantly upregulated genes (log(fold-change) > 0, Padj < 0.05) by RNA-seq analysis of cultured neonatal cardiomyocytes treated in vitro with corticosterone (10−6 M). Supplementary Table 4 List of primers used in this manuscript.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Figs. 2e,k, 3a,b,e and 4c

Uncropped western blots.

Source Data Extended Data Fig. 4c

Uncropped western blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Pra, S., Boriati, S., Miano, C. et al. Harnessing glucocorticoid receptor antagonism to enhance the efficacy of cardiac regenerative growth factors and cytokines. Nat Cardiovasc Res (2026). https://doi.org/10.1038/s44161-026-00776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44161-026-00776-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research