Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 885 results
Advanced filters: Author: Irene T. Ma Clear advanced filters
  • Sortilin mediates thyroglobulin endocytosis within the thyroid. Using structural biology, the authors reveal that sortilin acts as structural sensor of monomeric thyroglobulin, independently of its iodination and hormone content, via binding of a flexible C-terminal peptide.

    • Irene Boniardi
    • Giorgia Tanzi
    • Francesca Coscia
    ResearchOpen Access
    Nature Communications
    P: 1-14
  • A streamlined blood test using mass spectrometry improves measurement of amyloid-β for early Alzheimer’s disease diagnosis, requiring less sample volume and reagents while maintaining high accuracy, sensitivity and strong agreement with brain imaging.

    • Yijun Chen
    • Xuemei Zeng
    • Thomas K. Karikari
    ResearchOpen Access
    Nature Communications
    P: 1-14
  • Patients with myelodysplastic syndromes (MDS) have limited therapeutic options. Here the authors show that functionally impaired NK cells contribute to immune escape of pre-malignant clones in early stage MDS and that NK adoptive cell therapy can be considered to prevent or delay the development of MDS.

    • Juan Jose Rodriguez-Sevilla
    • Irene Ganan-Gomez
    • Simona Colla
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • APOBEC deaminases restrict retroviruses but can also mutate human DNA. Here, the authors show that cancerassociated APOBEC3s with low RNA binding, known to enter the nucleus, are selectively recognized by E3 ligases and degraded, eliminating harmful nuclear enzymes, and limiting genome mutation.

    • Irene Schwartz
    • Valentina Budroni
    • Gijs A. Versteeg
    ResearchOpen Access
    Nature Communications
    P: 1-24
  • Non-invasive strategies to detect and track activated myeloid cells will facilitate disease diagnosis and monitoring in patients affected by neuroinflammatory disorders. Here, the authors present 18F-FMD, a dendrimer-based PET tracer that detects and monitors activated myeloid cells at different stages (presymptomatic and symptomatic) of Experimental Autoimmune Encephalomyelitis (EAE) in mice and in response to disease-modifying therapies.

    • Renesmee C. Kuo
    • Mackenzie L. Carlson
    • Michelle L. James
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Missense mutations in the twelfth codon of KRAS are key drivers of lung cancer. Here, the authors develop a CRISPR-High Fidelity-Cas9-based strategy to target KRAS-G12C and KRAS-G12D mutants, reducing tumourigenicity without wild type KRAS off-targeting and circumventing certain therapy resistance mechanisms in preclinical models.

    • Juan Carlos Álvarez-Pérez
    • Juan Sanjuán-Hidalgo
    • Pedro P. Medina
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • By performing a CAR-adapted base-editing screen of phosphatidylinositol-3-kinase delta (PI3Kδ, PIK3CD), Bucher et al. identify mutations affecting endogenous PI3K–AKT signaling that enhances CAR T cell antitumor potency.

    • Philip Bucher
    • Nadine Brückner
    • Josef Leibold
    ResearchOpen Access
    Nature Cancer
    P: 1-16
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • Allele-preferential transcription factor binding can influence pancreatic ductal adenocarcinoma risk loci function. Here, the authors show allele-specific JunB and JunD binding at chr1p36.33 and propose a role for KLHL17 in protein homeostasis by mitigating inflammation.

    • Katelyn E. Connelly
    • Katherine Hullin
    • Laufey T. Amundadottir
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Mapping of the neutrophil compartment using single-cell transcriptional data from multiple physiological and patological states reveals its organizational architecture and how cell state dynamics and trajectories vary during health, inflammation and cancer.

    • Daniela Cerezo-Wallis
    • Andrea Rubio-Ponce
    • Iván Ballesteros
    ResearchOpen Access
    Nature
    Volume: 649, P: 1003-1012
  • In this work, the authors show that the essential Mycoplasma pneumoniae protein P116 enables cholesterol acquisition from lipoproteins and various cell types. An antibody against its C-terminal domain inhibits lipid acquisition, growth, and plaque binding, linking M. pneumoniae to atherosclerotic lipid-rich tissue.

    • David Vizarraga
    • Marina Marcos
    • Joan Carles Escolà-Gil
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Seufert et al. analyse chromatin accessibility to identify sites that open simultaneously in response to TNF. They discover two distinct types of co-accessible regulatory module for controlling the induction of proinflammatory gene expression.

    • Isabelle Seufert
    • Irene Gerosa
    • Karsten Rippe
    Research
    Nature Cell Biology
    Volume: 28, P: 182-196
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The existing ENCODE registry of candidate human and mouse cis-regulatory elements is expanded with the addition of new ENCODE data, integrating new functional data as well as new cell and tissue types.

    • Jill E. Moore
    • Henry E. Pratt
    • Zhiping Weng
    ResearchOpen Access
    Nature
    P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The impact of tumor intrinsic and immune alterations on disease progression in patients with Waldenstrom’s Macroglobulinemia (WM) remains to be characterized. Here, the authors perform single-cell RNA-sequencing and identify distinct tumor subtypes, tumour microenvironment features and potential therapeutic vulnerabilities in patients with WM.

    • Romanos Sklavenitis-Pistofidis
    • Yoshinobu Konishi
    • Irene M. Ghobrial
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Gas-phase actinium monofluoride (AcF) has been produced and spectroscopically studied at the CERN-ISOLDE radioactive ion beam facility; the results highlight the potential of 227AcF for exceptionally sensitive searches of CP violation.

    • M. Athanasakis-Kaklamanakis
    • M. Au
    • X. F. Yang
    ResearchOpen Access
    Nature
    Volume: 648, P: 562-568
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • So far little is known about how encapsulation affects the activity and folding of RNA, which is of interest for understanding the origin of cellular life. Here the authors show that encapsulation of functional RNA in vesicles increases RNA activity and improves RNA folding through a biophysical confinement effect.

    • Ranajay Saha
    • Samuel Verbanic
    • Irene A. Chen
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-11
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Neural mechanisms underlying thalamic contributions to evoked potentials by brain stimulation, which has been widely used for therapeutic interventions, are not fully understood. In this translational study the authors show that the thalamus plays a critical role in shaping its neural responses across species and across stimulation modalities.

    • Simone Russo
    • Leslie D. Claar
    • Irene Rembado
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Secondary resistance to venetoclax in patients with myelodysplastic syndromes (MDS) is not completely elucidated. Here, the authors show that haematopoietic stem cells with a granulo-monocytic differentiation transcriptional state drive secondary resistance to venetoclax in MDS patients who previously failed hypomethylating agent therapy.

    • Juan Jose Rodriguez-Sevilla
    • Irene Ganan-Gomez
    • Simona Colla
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-5
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16