Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A radiolabeled dendrimer non-invasively identifies and tracks innate immune cell activation in a mouse model of experimental autoimmune encephalomyelitis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

A radiolabeled dendrimer non-invasively identifies and tracks innate immune cell activation in a mouse model of experimental autoimmune encephalomyelitis

  • Renesmee C. Kuo  ORCID: orcid.org/0000-0002-9309-29141,2 na1,
  • Mackenzie L. Carlson3 na1,
  • Samantha T. Reyes  ORCID: orcid.org/0000-0002-2584-59022,
  • Sydney C. Nagy  ORCID: orcid.org/0000-0002-1837-89552,
  • Mausam Kalita  ORCID: orcid.org/0000-0002-4847-26782,
  • Israt S. Alam2,
  • Noeen Malik2,
  • Isaac M. Jackson2,
  • Christopher J. Acosta2,
  • Irene N. Falk2,
  • E. Carmen Azevedo2,
  • Yanrong Zhang4,
  • Lisa Nichols4,
  • Corinne Beinat  ORCID: orcid.org/0000-0003-1718-32722,
  • Naze G. Avci5,
  • Madhuri Chattopadhyay5,
  • S. Sakura Minami5,
  • Jeffrey L. Cleland5 &
  • …
  • Michelle L. James  ORCID: orcid.org/0000-0002-9934-70842,3 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diagnostic markers
  • Microglial cells
  • Multiple sclerosis
  • Organic chemistry
  • Translational research

Abstract

Multiple sclerosis (MS) is a chronic neurodegenerative disease driven by infiltration of activated innate immune cells into the central nervous system (CNS). Current imaging approaches for diagnosing and monitoring disease progression rely on structural lesions and cannot directly assess innate immune activity. Here, we describe a dendrimer positron emission tomography (PET) tracer, 18F-flurimedrimer (18F-FMD), for non-invasive, longitudinal tracking of activated myeloid cells. In an experimental autoimmune encephalomyelitis (EAE) murine model, 18F-FMD specifically detects myeloid activation at presymptomatic and symptomatic stages, with PET signal correlating with disease severity. Moreover, 18F-FMD sensitively captures therapeutic response to fingolimod (FTY720) and a CSF1R dendranib (H74DS3M8), both of which suppress immune cell activation and attenuate disease severity. These findings highlight the potential of 18F-FMD PET for specific, real-time monitoring of innate immune responses, and the applicability of the dendrimer in clinical settings for monitoring therapeutic efficacy, advancing the development of personalized, myeloid-targeted strategies for MS.

Data availability

All data are included in the Supplementary Information or available from the authors, as are unique reagents used in this Article. The raw numbers for charts and graphs are available in the Source Data file whenever possible. The raw PET imaging and flow cytometry data generated in this study have been deposited in the Figshare database under https://doi.org/10.6084/m9.figshare.30644609. Source data are provided with this paper.

References

  1. National Multiple Sclerosis Society. Number of people with MS | Atlas of MS. https://atlasofms.org/map/global/epidemiology/number-of-people-with-ms.

  2. Loma, I. & Heyman, R. Multiple sclerosis: pathogenesis and treatment. Curr. Neuropharmacol. 9, 409–416 (2011).

    Google Scholar 

  3. Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

    Google Scholar 

  4. Mishra, M. K. & Yong, V. W. Myeloid cells—targets of medication in multiple sclerosis. Nat. Rev. Neurol. 12, 539–551 (2016).

    Google Scholar 

  5. Hernández-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B. & Sotelo, J. Initial Immunopathogenesis of Multiple Sclerosis: innate Immune Response. Clin. Dev. Immunol. 2013, 413465 (2013).

    Google Scholar 

  6. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Google Scholar 

  7. Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    Google Scholar 

  8. Wingerchuk, D. M., Lucchinetti, C. F. & Noseworthy, J. H. Multiple sclerosis: current pathophysiological concepts. Lab. Investig. 81, 263–281 (2001).

    Google Scholar 

  9. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. V. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Google Scholar 

  10. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    Google Scholar 

  11. Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ TH-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    Google Scholar 

  12. Ifergan, I. & Miller, S. D. Potential for targeting myeloid cells in controlling CNS inflammation. Front. Immunol. 11, 571897 (2020).

    Google Scholar 

  13. Confavreux, C. & Vukusic, S. The clinical course of multiple sclerosis. in Handbook of Clinical Neurology Vol. 122, 343–369 (Elsevier, 2014).

  14. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Google Scholar 

  15. Fischer, S., Proschmann, U., Akgün, K. & Ziemssen, T. Lymphocyte counts and multiple sclerosis therapeutics: between mechanisms of action and treatment-limiting side effects. Cells 10, 3177 (2021).

    Google Scholar 

  16. McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    Google Scholar 

  17. Luus, C., Hanani, R., Reynolds, A. & Kassiou, M. The development of PET radioligands for imaging the translocator protein (18 kDa): what have we learned? J. Label. Compd. Radiopharm. 53, 501–510 (2010).

    Google Scholar 

  18. Chen, M.-K. & Guilarte, T. R. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol. Ther. 118, 1–17 (2008).

    Google Scholar 

  19. Airas, L., Rissanen, E. & Rinne, J. O. Imaging neuroinflammation in multiple sclerosis using TSPO-PET. Clin. Transl. Imaging 3, 461–473 (2015).

    Google Scholar 

  20. Polvinen, E., Matilainen, M., Nylund, M., Sucksdorff, M. & Airas, L. M. TSPO-detectable chronic active lesions predict disease progression in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflammation 10, e200133 (2023).

    Google Scholar 

  21. Owen, D. R. et al. An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow. Metab. 32, 1–5 (2012).

    Google Scholar 

  22. Nutma, E. et al. Activated microglia do not increase 18 kDa translocator protein (TSPO) expression in the multiple sclerosis brain. Glia 69, 2447–2458 (2021).

    Google Scholar 

  23. Jain, P. et al. Neuroinflammation PET imaging: current opinion and future directions. J. Nucl. Med. 61, 1107–1112 (2020).

    Google Scholar 

  24. Wu, C., Li, F., Niu, G. & Chen, X. PET imaging of inflammation biomarkers. Theranostics 3, 448–466 (2013).

    Google Scholar 

  25. Carlson, M. L. et al. Development and initial assessment of [18F]OP-801: a novel hydroxyl dendrimer PET tracer for preclinical imaging of innate immune activation in the whole body and brain. Mol. Imaging Biol. 25, 1063–1072 (2023).

    Google Scholar 

  26. Jackson, I. M. et al. Clinical radiosynthesis and translation of [18F]OP-801: a novel radiotracer for imaging reactive microglia and macrophages. ACS Chem. Neurosci. 14, 2416–2424 (2023).

    Google Scholar 

  27. Sharma, A. et al. Dense hydroxyl polyethylene glycol dendrimer targets activated glia in multiple CNS disorders. Sci. Adv. 6, eaay8514 (2020).

    Google Scholar 

  28. Kambhampati, S. P. et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Investig. Ophthalmol. Vis. Sci. 56, 4413–4424 (2015).

    Google Scholar 

  29. Kambhampati, S. P. et al. Systemic dendrimer nanotherapies for targeted suppression of choroidal inflammation and neovascularization in age-related macular degeneration. J. Control. Release 335, 527–540 (2021).

    Google Scholar 

  30. Henningfield, C. M. et al. Selective targeting and modulation of plaque associated microglia via systemic hydroxyl dendrimer administration in an Alzheimer’s disease mouse model. Alzheimers Res. Ther. 16, 101 (2024).

    Google Scholar 

  31. Nance, E. et al. Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett syndrome. J. Neuroinflammation 14, 252 (2017).

    Google Scholar 

  32. Arteaga Cabeza, O. et al. Neuroprotective effects of a dendrimer-based glutamate carboxypeptidase inhibitor on superoxide dismutase transgenic mice after neonatal hypoxic-ischemic brain injury. Neurobiol. Dis. 148, 105201 (2021).

    Google Scholar 

  33. Niño, D. F. et al. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain. Sci. Transl. Med. 10, eaan0237 (2018).

    Google Scholar 

  34. Mishra, M. K. et al. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8, 2134–2147 (2014).

    Google Scholar 

  35. Carlson, M. L. et al. Development and initial assessment of [18F]OP-801: a novel hydroxyl dendrimer PET tracer for imaging maladaptive inflammation in the whole body and brain. Mol. Imaging Biol. 25, 1063–1072 (2023).

    Google Scholar 

  36. Voskuhl, R. R. & MacKenzie-Graham, A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front. Mol. Neurosci. 15, 1024058 (2022).

  37. Hamilton, A. M. et al. Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci. Rep. 9, 8488 (2019).

    Google Scholar 

  38. McCarthy, D. P., Richards, M. H. & Miller, S. D. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol. Biol. Clifton NJ 900, 381–401 (2012).

    Google Scholar 

  39. Barthelmes, J. et al. Induction of experimental autoimmune encephalomyelitis in mice and evaluation of the disease-dependent distribution of immune cells in various tissues. J. Vis. Exp. 53933. https://doi.org/10.3791/53933 (2016).

  40. Dagkonaki, A. et al. Mannan-MOG35-55 reverses experimental autoimmune encephalomyelitis, inducing a peripheral type 2 myeloid response, reducing CNS inflammation, and preserving axons in spinal cord lesions. Front. Immunol. 11, 575451 (2020).

    Google Scholar 

  41. Pyka-Fosciak, G., Stasiolek, M. & Litwin, J. A. Immunohistochemical analysis of spinal cord components in mouse model of experimental autoimmune encephalomyelitis. Folia Histochem. Cytobiol. 56, 151–158 (2018).

    Google Scholar 

  42. Nissen, J. C., Thompson, K. K., West, B. L. & Tsirka, S. E. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp. Neurol. 307, 24–36 (2018).

    Google Scholar 

  43. Hagan, N. et al. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. 11, 904 (2020).

    Google Scholar 

  44. Liaw, K. et al. Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration. Bioeng. Transl. Med. 5, e10160 (2020).

    Google Scholar 

  45. Zhang, F. et al. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers. Biomaterials 52, 507–516 (2015).

    Google Scholar 

  46. Lesniak, W. G. et al. Biodistribution of fluorescently labeled PAMAM dendrimers in neonatal rabbits: effect of neuroinflammation. Mol. Pharm. 10, 4560–4571 (2013).

    Google Scholar 

  47. Wang, X.-S. et al. Idazoxan reduces blood–brain barrier damage during experimental autoimmune encephalomyelitis in mouse. Eur. J. Pharmacol. 736, 70–76 (2014).

    Google Scholar 

  48. Wolburg, H., Wolburg-Buchholz, K. & Engelhardt, B. Involvement of Tight junctions during transendothelial migration of mononuclear cells in experimental autoimmune encephalomyelitis. in Neuroinflammation in Stroke (eds Dirnagl, U. & Elger, B.) 17–38. https://doi.org/10.1007/978-3-662-05426-0_2 (Springer Berlin Heidelberg, 2004).

  49. Gandhi, R., Laroni, A. & Weiner, H. L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 221, 7–14 (2010).

    Google Scholar 

  50. Bittner, S., Afzali, A. M., Wiendl, H. & Meuth, S. G. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J. Vis. Exp. 51275. https://doi.org/10.3791/51275 (2014).

  51. Thomas, T. P. et al. Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules 10, 3207–3214 (2009).

    Google Scholar 

  52. Alnasser, Y. et al. Preferential and increased uptake of hydroxyl-terminated PAMAM dendrimers by activated microglia in rabbit brain mixed glial culture. Mol. J. Synth. Chem. Nat. Prod. Chem. 23, 1025 (2018).

    Google Scholar 

  53. Albertazzi, L., Serresi, M., Albanese, A. & Beltram, F. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm. 7, 680–688 (2010).

    Google Scholar 

  54. Sharma, A. et al. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics 8, 5529–5547 (2018).

    Google Scholar 

  55. Zhang, F., Nance, E., Alnasser, Y., Kannan, R. & Kannan, S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J. Neuroinflammation 13, 65 (2016).

    Google Scholar 

  56. Goossens, J. Revised McDonald criteria allow earlier and more precise MS diagnosis. Medical Conferences https://conferences.medicom-publishers.com/specialisation/neurology/ectrims-2024/revised-mcdonald-criteria-allow-earlier-and-more-precise-ms-diagnosis-2/ (2024).

  57. Kitagawa, D. et al. Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J. Biochem. 151, 47–55 (2012).

    Google Scholar 

  58. Vermersch, P. et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 12, 36 (2012).

    Google Scholar 

  59. Ettcheto, M. et al. Masitinib for the treatment of Alzheimer’s disease. Neurodegener. Dis. Manag. 11, 263–276 (2021).

    Google Scholar 

  60. Webb, M. et al. Sphingosine 1-phosphate receptor agonists attenuate relapsing–remitting experimental autoimmune encephalitis in SJL mice. J. Neuroimmunol. 153, 108–121 (2004).

    Google Scholar 

  61. Di Dario, M. et al. Myeloid cells as target of fingolimod action in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflammation 2, e157 (2015).

    Google Scholar 

  62. Chun, J. & Hartung, H.-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    Google Scholar 

  63. Vogel, D. Y. et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflammation 10, 809 (2013).

    Google Scholar 

  64. Leuti, A. et al. Macrophage plasticity and polarization are altered in the experimental model of multiple sclerosis. Biomolecules 11, 837 (2021).

    Google Scholar 

  65. Radandish, M., Khalilian, P. & Esmaeil, N. The role of distinct subsets of macrophages in the pathogenesis of MS and the impact of different therapeutic agents on these populations. Front. Immunol. 12, 667705 (2021).

    Google Scholar 

  66. Boven, L. A. et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129, 517–526 (2006).

    Google Scholar 

  67. Vankriekelsvenne, E. et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 70, 1170–1190 (2022).

    Google Scholar 

  68. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    Google Scholar 

  69. van Wageningen, T. A. et al. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol. Commun. 7, 206 (2019).

    Google Scholar 

  70. Fox, R. J. et al. Tolebrutinib in nonrelapsing secondary progressive multiple sclerosis. N. Engl. J. Med. 392, 1883–1892 (2025).

    Google Scholar 

  71. Rousset, O., Rahmim, A., Alavi, A. & Zaidi, H. Partial volume correction strategies in PET. PET Clin. 2, 235–249 (2007).

    Google Scholar 

  72. Van Der Weijden, C. W. J. et al. Myelin imaging of the spinal cord in animal models and patients with multiple sclerosis using [11C]MeDAS PET: a translational study. J. Nucl. Med. 66, 136–141 (2025).

    Google Scholar 

  73. Kuntner, C. & Stout, D. B. Quantitative preclinical PET imaging: opportunities and challenges. Front. Phys. 2, 12 (2014).

  74. Krishnamoorthy, G. & Wekerle, H. EAE: an immunologist’s magic eye. Eur. J. Immunol. 39, 2031–2035 (2009).

    Google Scholar 

  75. Moradi, F. et al. [18F]Flurimedrimer, a novel nanomedicine radiotracer, selectively targeting activated microglia in human brain. J. Nucl. Med. 66, 251092 (2025).

    Google Scholar 

  76. Ashvattha Therapeutics, Inc. A Phase 1/2 Study to Evaluate Safety, PK and Biodistribution of an Imaging Agent, 18F-OP-801, After Intravenous Administration to Patients With ALS, Alzheimer’s Disease, Multiple Sclerosis, Parkinson’s Disease and Healthy Volunteers. https://clinicaltrials.gov/study/NCT05395624 (2024).

  77. James, M. L. et al. Imaging B cells in a mouse model of multiple sclerosis using 64 Cu-rituximab PET. J. Nucl. Med. 58, 1845–1851 (2017).

    Google Scholar 

  78. Cropper, H. C. et al. Longitudinal translocator protein-18 kDa–positron emission tomography imaging of peripheral and central myeloid cells in a mouse model of complex regional pain syndrome. Pain 160, 2136–2148 (2019).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Emily Becker for her assistance in preparing the manuscript. This work was supported by Ashvattha Therapeutics (to M.L.J.), NIH/NINDS (grant number: 1R21NS135513-01A1, to M.L.J.) and NSF GRFP (grant number: DGE-2146755, to R.C.K.).

Author information

Author notes
  1. These authors contributed equally: Renesmee C. Kuo, Mackenzie L. Carlson.

Authors and Affiliations

  1. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    Renesmee C. Kuo

  2. Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, USA

    Renesmee C. Kuo, Samantha T. Reyes, Sydney C. Nagy, Mausam Kalita, Israt S. Alam, Noeen Malik, Isaac M. Jackson, Christopher J. Acosta, Irene N. Falk, E. Carmen Azevedo, Corinne Beinat & Michelle L. James

  3. Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA

    Mackenzie L. Carlson & Michelle L. James

  4. Department of Medicine, Stanford University, Stanford, CA, USA

    Yanrong Zhang & Lisa Nichols

  5. Ashvattha Therapeutics, Inc., Redwood City, CA, USA

    Naze G. Avci, Madhuri Chattopadhyay, S. Sakura Minami & Jeffrey L. Cleland

Authors
  1. Renesmee C. Kuo
    View author publications

    Search author on:PubMed Google Scholar

  2. Mackenzie L. Carlson
    View author publications

    Search author on:PubMed Google Scholar

  3. Samantha T. Reyes
    View author publications

    Search author on:PubMed Google Scholar

  4. Sydney C. Nagy
    View author publications

    Search author on:PubMed Google Scholar

  5. Mausam Kalita
    View author publications

    Search author on:PubMed Google Scholar

  6. Israt S. Alam
    View author publications

    Search author on:PubMed Google Scholar

  7. Noeen Malik
    View author publications

    Search author on:PubMed Google Scholar

  8. Isaac M. Jackson
    View author publications

    Search author on:PubMed Google Scholar

  9. Christopher J. Acosta
    View author publications

    Search author on:PubMed Google Scholar

  10. Irene N. Falk
    View author publications

    Search author on:PubMed Google Scholar

  11. E. Carmen Azevedo
    View author publications

    Search author on:PubMed Google Scholar

  12. Yanrong Zhang
    View author publications

    Search author on:PubMed Google Scholar

  13. Lisa Nichols
    View author publications

    Search author on:PubMed Google Scholar

  14. Corinne Beinat
    View author publications

    Search author on:PubMed Google Scholar

  15. Naze G. Avci
    View author publications

    Search author on:PubMed Google Scholar

  16. Madhuri Chattopadhyay
    View author publications

    Search author on:PubMed Google Scholar

  17. S. Sakura Minami
    View author publications

    Search author on:PubMed Google Scholar

  18. Jeffrey L. Cleland
    View author publications

    Search author on:PubMed Google Scholar

  19. Michelle L. James
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.C.K. and M.L.C. designed and implemented the study, led data acquisition and analysis, and wrote the manuscript and prepared all figures and tables. S.T.R., S.C.N., M.K., I.S.A., C.J.A., I.N.F., E.C.A., C.B., and M.C. helped with data acquisition. N.M. and I.M.J. synthesized the radiotracer. Y.Z. and L.N. at the Stanford Shared FACS Facility designed the flow cytometry panel and provided guidance on data analysis. N.G.A., S.S.M., and J.L.C. helped conceptualize and design the study and analysis. M.L.J. helped design the study and assisted with developing figures and interpreting data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Michelle L. James.

Ethics declarations

Competing interests

N.G.A., M.C., S.S.M., and J.L.C. are employed by Ashvattha Therapeutics during the completion of this work. All other authors have declared no conflicts of interest.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, R.C., Carlson, M.L., Reyes, S.T. et al. A radiolabeled dendrimer non-invasively identifies and tracks innate immune cell activation in a mouse model of experimental autoimmune encephalomyelitis. Nat Commun (2026). https://doi.org/10.1038/s41467-025-67907-x

Download citation

  • Received: 24 January 2025

  • Accepted: 11 December 2025

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-67907-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Precision Medicine

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research