Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 581 results
Advanced filters: Author: O. Stephan Clear advanced filters
  • The impact of variants of uncertain significance (VUS) on protein function and cancer risk remain unclear. Here, the authors focus on the functional impact of VUS of the PALB2 gene and identify defects in DNA damage repair by homologous recombination associated with increased risk of breast cancer.

    • Rick A.C.M. Boonen
    • Sabine C. Knaup
    • Haico van Attikum
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • CFAP20 has a key role in rescuing RNA polymerase II complexes that have arrested during DNA transcription, limiting the accumulation of R-loops and preventing collisions between the transcription and replication machinery.

    • Sidrit Uruci
    • Daphne E. C. Boer
    • Martijn S. Luijsterburg
    ResearchOpen Access
    Nature
    P: 1-10
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this work, fragments identified by 19F-NMR are optimized into submicromolar binders of the MITF transcription factor. These results support direct targeting of bHLH-LZ DNA binding domains and provide a foundation for the development of new melanoma therapies.

    • Deborah Castelletti
    • Jürgen Hinrichs
    • Wolfgang Jahnke
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-18
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • High-depth sequencing of non-cancerous tissue from patients with metastatic cancer reveals single-base mutational signatures of alcohol, smoking and cancer treatments, and reveals how exogenous factors, including cancer therapies, affect somatic cell evolution.

    • Oriol Pich
    • Sophia Ward
    • Nicholas McGranahan
    ResearchOpen Access
    Nature
    P: 1-11
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Living plant collections hold an immense wealth of plant diversity and have critical educational, scientific and conservation roles. This Perspective examines current data management practices of living collections and advocates for higher data standards and a robust and inclusive global data ecosystem.

    • Samuel F. Brockington
    • Patricia Malcolm
    • Paul Smith
    Reviews
    Nature Plants
    Volume: 12, P: 18-25
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Hepatitis B virus is an almost uniquely human-tropic pathogen for which model systems are scarce. Here, the authors determine key residues within the HBV receptor that form a barrier in the HBV life cycle in primates and identify marmosets as a model candidate for infection with simian-tropic HBV.

    • Yongzhen Liu
    • Thomas R. Cafiero
    • Alexander Ploss
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage disease typically with childhood onset of neurodegenerative symptoms. Here the authors report that in a mouse model of CLN7 disease neuronal reactive oxygen species and the activity of glycolytic enzyme PFKFB3 are increased, while PFKFB3 inhibition ameliorates hallmarks of pathology.

    • Irene Lopez-Fabuel
    • Marina Garcia-Macia
    • Juan P. Bolaños
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • Membrane protein topogenesis is not fully understood, although the path that proteins take through the ribosome and Sec-complex has been described. Here, Bischoff et al.present the structure of a ribosome-SecY complex containing an intermediate of proteorhodopsin, which provides further insight into this topogenesis.

    • Lukas Bischoff
    • Stephan Wickles
    • Roland Beckmann
    Research
    Nature Communications
    Volume: 5, P: 1-8
  • The authors develop a supervised and unsupervised learning algorithm Signature. Machine learning and network model analysis of Hi-C datasets across 62 2n genomes suggest that inter-chromosomal contacts demarcate genome topology along a spatial gradient of genome activity.

    • Milad Mokhtaridoost
    • Jordan J. Chalmers
    • Philipp G. Maass
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Using sequencing and haplotype-resolved assembly of 65 diverse human genomes, complex regions including the major histocompatibility complex and centromeres are analysed.

    • Glennis A. Logsdon
    • Peter Ebert
    • Tobias Marschall
    ResearchOpen Access
    Nature
    Volume: 644, P: 430-441
  • This study used fine-mapping to analyze genetic regions associated with bipolar disorder, identifying specific risk genes and providing new insights into the biology of the condition that may guide future research and treatment approaches.

    • Maria Koromina
    • Ashvin Ravi
    • Niamh Mullins
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1393-1403
  • Timothy Frayling, Joel Hirschhorn, Peter Visscher and colleagues report a meta-analysis of genome-wide association studies for adult height in 253,288 individuals. They identify 697 variants in 423 loci significantly associated with adult height and find that these variants cluster in pathways involved in growth and together explain one-fifth of the heritability for this trait.

    • Andrew R Wood
    • Tonu Esko
    • Timothy M Frayling
    Research
    Nature Genetics
    Volume: 46, P: 1173-1186
  • Venous tumour thrombus can occur within renal cell carcinoma, and can require complex additional surgery and treatment. Here, the authors analyse multiparametric data from patients treated with axitinib and develop a machine learning model to predict neoadjuvant treatment response.

    • Rebecca Wray
    • Hania Paverd
    • Robert J. Jones
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Saturable absorption, a technologically relevant property of graphene, is usually explained with Pauli blocking of optically driven carriers in the strong-excitation regime. Here, Winzeret al. reveal a new saturation regime at low excitations, resulting in a double-bended saturation behaviour.

    • Torben Winzer
    • Martin Mittendorff
    • Andreas Knorr
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-6
  • The authors defined a roadmap for investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders. Their proof-of-concept study using the largest available common variant data sets for schizophrenia and volumes of several (mainly subcortical) brain structures did not find evidence of genetic overlap.

    • Barbara Franke
    • Jason L Stein
    • Patrick F Sullivan
    Research
    Nature Neuroscience
    Volume: 19, P: 420-431