Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Environmental enrichment and physical exercise prevent stress-induced social avoidance and blood-brain barrier alterations via Fgf2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Environmental enrichment and physical exercise prevent stress-induced social avoidance and blood-brain barrier alterations via Fgf2

  • Sam E. J. Paton  ORCID: orcid.org/0000-0001-6388-57051,
  • José L. Solano  ORCID: orcid.org/0000-0002-1873-46571,
  • Alice Cadoret1,
  • Adeline Collignon  ORCID: orcid.org/0009-0005-5086-56481,
  • Luisa Bandeira Binder  ORCID: orcid.org/0000-0003-2372-86891,
  • Béatrice Daigle1,
  • Laura Menegatti Bevilacqua1,
  • Émanuelle Richer1,
  • François Coulombe-Rozon1,
  • Laurence Dion-Albert1,
  • Katarzyna A. Dudek  ORCID: orcid.org/0000-0003-4894-52681,
  • Signature Consortium,
  • Manon Lebel  ORCID: orcid.org/0000-0003-1649-12141 &
  • …
  • Caroline Ménard  ORCID: orcid.org/0000-0001-8202-73781 

Nature Communications , Article number:  (2026) Cite this article

  • 4747 Accesses

  • 59 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Blood–brain barrier
  • Stress and resilience

Abstract

Chronic stress promotes blood-brain barrier (BBB) integrity loss leading to passage of inflammatory mediators in mood-regulating brain areas and establishment of depressive behaviors. Conversely, neurovascular adaptations favoring stress resilience and preventive strategies to promote them are undetermined. We report that environmental enrichment dampens stress-induced loss of endothelial tight junction Claudin-5 (Cldn5) along with anxiety- and depression-like behaviors in male mice via an increase in fibroblast growth factor 2 (Fgf2). Coping with voluntary physical exercise also protects the BBB from stress deleterious effects by increasing Fgf2. Fgf2 is mostly expressed by glial cells, and viral-mediated astrocyte-specific Fgf2 upregulation prevents stress-induced social avoidance while downregulation increases stress susceptibility and blunts physical exercise benefits. Treatment of mouse and human endothelial cells with Fgf2 prior an immune challenge reduces BBB dysfunction, Cldn5 loss, and altered signaling supporting its protective role. Circulating FGF2 level is linked with depression severity and symptomatology in men and women reinforcing involvement of this growth factor in mood disorders.

Similar content being viewed by others

Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue

Article Open access 10 January 2022

Dynamic modulation of the blood–brain barrier in the healthy brain

Article 15 October 2025

Glial growth factor 2 treatment alleviates ischemia and reperfusion-damaged integrity of the blood-brain barrier through decreasing Mfsd2a/caveolin-1-mediated transcellular and Pdlim5/YAP/TAZ-mediated paracellular permeability

Article 20 June 2024

Data availability

All data supporting the findings of this study are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Collaborators, G. B. D. M. D. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Google Scholar 

  2. Martin, L. A., Neighbors, H. W. & Griffith, D. M. The experience of symptoms of depression in men vs women: analysis of the National Comorbidity Survey Replication. JAMA Psychiatry 70, 1100–1106 (2013).

    Google Scholar 

  3. Bangasser, D. A. & Cuarenta, A. Sex differences in anxiety and depression: circuits and mechanisms. Nat. Rev. Neurosci. 22, 674–684 (2021).

    Google Scholar 

  4. Labonte, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med 23, 1102–1111 (2017).

    Google Scholar 

  5. Seney, M. L. et al. Opposite molecular signatures of depression in men and women. Biol. Psychiatry 84, 18–27 (2018).

    Google Scholar 

  6. Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    Google Scholar 

  7. Dion-Albert, L., Dudek, K. A., Russo, S. J., Campbell, M. & Menard, C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci. 46, 276–292 (2023).

    Google Scholar 

  8. Coppen, A. J. Abnormality of the blood-cerebrospinal fluid barrier of patients suffering from a depressive illness. J. Neurol. Neurosurg. Psychiatry 23, 156–161 (1960).

    Google Scholar 

  9. Menard, C., Pfau, M. L., Hodes, G. E. & Russo, S. J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42, 62–80 (2017).

    Google Scholar 

  10. Menard, C., Hodes, G. E. & Russo, S. J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 321, 138–162 (2016).

    Google Scholar 

  11. Daneman, R. & Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Google Scholar 

  12. Kaplan, L., Chow, B. W. & Gu, C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21, 416–432 (2020).

    Google Scholar 

  13. Segarra, M., Aburto, M. R. & Acker-Palmer, A. Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. 44, 393–405 (2021).

    Google Scholar 

  14. Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 111, 16136–16141 (2014).

    Google Scholar 

  15. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    Google Scholar 

  16. Lehmann, M. L., Poffenberger, C. N., Elkahloun, A. G. & Herkenham, M. Analysis of cerebrovascular dysfunction caused by chronic social defeat in mice. Brain Behav. Immun. 88, 735–747 (2020).

    Google Scholar 

  17. Sawicki, C. M. et al. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience 302, 151–164 (2015).

    Google Scholar 

  18. Dion-Albert, L. et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun. 13, 164 (2022).

    Google Scholar 

  19. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Google Scholar 

  20. Wood, J. N. & Grafman, J. Human prefrontal cortex: processing and representational perspectives. Nat. Rev. Neurosci. 4, 139–147 (2003).

    Google Scholar 

  21. Dudek, K. A. et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc. Natl. Acad. Sci. USA 117, 3326–3336 (2020).

    Google Scholar 

  22. Cheng, Y. et al. TNFalpha disrupts blood-brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav. Immun. 69, 556–567 (2018).

    Google Scholar 

  23. Greene, C., Hanley, N. & Campbell, M. Blood-brain barrier-associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl. Psychiatry 10, 373 (2020).

    Google Scholar 

  24. Kamintsky, L. et al. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin. 26, 102049 (2020).

    Google Scholar 

  25. Diamond, M. C., Krech, D. & Rosenzweig, M. R. The effects of an enriched environment on the histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–120 (1964).

    Google Scholar 

  26. Sirevaag, A. M., Black, J. E., Shafron, D. & Greenough, W. T. Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats. Brain Res. 471, 299–304 (1988).

    Google Scholar 

  27. Ekstrand, J., Hellsten, J. & Tingstrom, A. Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci. Lett. 442, 203–207 (2008).

    Google Scholar 

  28. Paton, S. E. J., Solano, J. L., Coulombe-Rozon, F., Lebel, M. & Menard, C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J. Psychiatry Neurosci. 48, E190–E208 (2023).

    Google Scholar 

  29. Lorant, V. et al. Socioeconomic inequalities in depression: a meta-analysis. Am. J. Epidemiol. 157, 98–112 (2003).

    Google Scholar 

  30. Teychenne, M., Ball, K. & Salmon, J. Sedentary behavior and depression among adults: a review. Int. J. Behav. Med. 17, 246–254 (2010).

    Google Scholar 

  31. Lehmann, M. L. & Herkenham, M. Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway. J. Neurosci. 31, 6159–6173 (2011).

    Google Scholar 

  32. Mul, J. D. et al. Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens DeltaFosB. Neuropsychopharmacology 43, 1934–1942 (2018).

    Google Scholar 

  33. Cadoret, A. et al. Environmental conditions of recognition memory testing induce neurovascular changes in the hippocampus in a sex-specific manner in mice. Behav. Brain Res. 448, 114443 (2023).

    Google Scholar 

  34. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Google Scholar 

  35. Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89, 37–53 (2016).

    Google Scholar 

  36. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    Google Scholar 

  37. Irmady, K., Zechel, S. & Unsicker, K. Fibroblast growth factor 2 regulates astrocyte differentiation in a region-specific manner in the hindbrain. Glia 59, 708–719 (2011).

    Google Scholar 

  38. Seghezzi, G. et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659–1673 (1998).

    Google Scholar 

  39. Hosaka, K. et al. Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRbeta signaling pathways in tumor vascular remodeling. Cell Discov. 4, 3 (2018).

    Google Scholar 

  40. Meltzer, H., Vostanis, P., Ford, T., Bebbington, P. & Dennis, M. S. Victims of bullying in childhood and suicide attempts in adulthood. Eur. Psychiatry 26, 498–503 (2011).

    Google Scholar 

  41. Golden, S. A., Covington, H. E. 3rd, Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).

    Google Scholar 

  42. Matsuno, H. et al. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol. Psychiatry 27, 3822–3832 (2022).

    Google Scholar 

  43. Salmaso, N. et al. Fibroblast growth factor 2 modulates hypothalamic pituitary axis activity and anxiety behavior through glucocorticoid receptors. Biol. Psychiatry 80, 479–489 (2016).

    Google Scholar 

  44. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664–670 (2004).

    Google Scholar 

  45. Murakami, M. et al. The FGF system has a key role in regulating vascular integrity. J. Clin. Investig. 118, 3355–3366 (2008).

    Google Scholar 

  46. Elsayed, M. et al. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol. Psychiatry 72, 258–265 (2012).

    Google Scholar 

  47. Perez, J. A., Clinton, S. M., Turner, C. A., Watson, S. J. & Akil, H. A new role for FGF2 as an endogenous inhibitor of anxiety. J. Neurosci. 29, 6379–6387 (2009).

    Google Scholar 

  48. Simard, S. et al. Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLoS One 13, e0204980 (2018).

    Google Scholar 

  49. Turner, C. A., Gula, E. L., Taylor, L. P., Watson, S. J. & Akil, H. Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Res. 1224, 63–68 (2008).

    Google Scholar 

  50. Birey, F. et al. Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88, 941–956 (2015).

    Google Scholar 

  51. Deng, Z., Deng, S., Zhang, M. R. & Tang, M. M. Fibroblast growth factors in depression. Front Pharm. 10, 60 (2019).

    Google Scholar 

  52. Evans, S. J. et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 101, 15506–15511 (2004).

    Google Scholar 

  53. Lopez, J. & Bagot, R. C. Defining valid chronic stress models for depression with female rodents. Biol. Psychiatry 90, 226–235 (2021).

    Google Scholar 

  54. Harris, A. Z. et al. A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology 43, 1276–1283 (2018).

    Google Scholar 

  55. Johnson, A., Rainville, J. R., Rivero-Ballon, G. N., Dhimitri, K. & Hodes, G. E. Testing the limits of sex differences using variable stress. Neuroscience 454, 72–84 (2021).

    Google Scholar 

  56. Hodes, G. E. et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 35, 16362–16376 (2015).

    Google Scholar 

  57. Gomez-Pinilla, F., Dao, L. & So, V. Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res. 764, 1–8 (1997).

    Google Scholar 

  58. Rogers, J. et al. Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment. Transl. Psychiatry 6, e794 (2016).

    Google Scholar 

  59. Dion-Albert, L. et al. Sex differences in the blood-brain barrier: implications for mental health. Front. Neuroendocrinol. 65, 100989 (2022).

    Google Scholar 

  60. Tuglu, C., Kara, S. H., Caliyurt, O., Vardar, E. & Abay, E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology 170, 429–433 (2003).

    Google Scholar 

  61. Fan, N., Luo, Y., Ou, Y. & He, H. Altered serum levels of TNF-alpha, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol 32 https://doi.org/10.1002/hup.2588 (2017).

  62. Hochman, E. et al. Serum claudin-5 levels among patients with unipolar and bipolar depression in relation to the pro-inflammatory cytokine tumor necrosis factor-alpha levels. Brain Behav. Immun. 109, 162–167 (2023).

    Google Scholar 

  63. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Google Scholar 

  64. Eto, M., Kouroedov, A., Cosentino, F. & Luscher, T. F. Glycogen synthase kinase-3 mediates endothelial cell activation by tumor necrosis factor-alpha. Circulation 112, 1316–1322 (2005).

    Google Scholar 

  65. Zhou, Z. et al. Role of NF-kappaB and PI 3-kinase/Akt in TNF-alpha-induced cytotoxicity in microvascular endothelial cells. Am. J. Physiol. Ren. Physiol. 295, F932–F941 (2008).

    Google Scholar 

  66. Lynn, K. S., Peterson, R. J. & Koval, M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. Biochim. Biophys. Acta Biomembr. 1862, 183339 (2020).

    Google Scholar 

  67. Katoh, M. & Katoh, M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 5, 1059–1064 (2006).

    Google Scholar 

  68. Ramirez, S. H. et al. Inhibition of glycogen synthase kinase 3beta promotes tight junction stability in brain endothelial cells by half-life extension of occludin and claudin-5. PLoS One 8, e55972 (2013).

    Google Scholar 

  69. Hoffmeister, L., Diekmann, M., Brand, K. & Huber, R. GSK3: a kinase balancing promotion and resolution of inflammation. Cells 9 https://doi.org/10.3390/cells9040820 (2020).

  70. Taddei, A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10, 923–934 (2008).

    Google Scholar 

  71. Oladipupo, S. S. et al. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc. Natl. Acad. Sci. USA 111, 13379–13384 (2014).

    Google Scholar 

  72. Salehi, A. et al. Up-regulation of Wnt/beta-catenin expression is accompanied with vascular repair after traumatic brain injury. J. Cereb. Blood Flow. Metab. 38, 274–289 (2018).

    Google Scholar 

  73. Hodes, G. E., Menard, C. & Russo, S. J. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 4, 15–22 (2016).

    Google Scholar 

  74. Osimo, E. F. et al. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5166 patients and 5083 controls. Brain Behav. Immun. 87, 901–909 (2020).

    Google Scholar 

  75. Doney, E., Cadoret, A., Dion-Albert, L., Lebel, M. & Menard, C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur. J. Neurosci. 55, 2851–2894 (2022).

    Google Scholar 

  76. Goswami, D. B. et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 126–133 (2013).

    Google Scholar 

  77. Takebayashi, M., Hashimoto, R., Hisaoka, K., Tsuchioka, M. & Kunugi, H. Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J. Neural Transm. 117, 1119–1122 (2010).

    Google Scholar 

  78. Kahl, K. G. et al. Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder. Psychoneuroendocrinology 34, 353–357 (2009).

    Google Scholar 

  79. Lu, S. et al. Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis. Compr. Psychiatry 54, 953–961 (2013).

    Google Scholar 

  80. Wu, C. K., Tseng, P. T., Chen, Y. W., Tu, K. Y. & Lin, P. Y. Significantly higher peripheral fibroblast growth factor-2 levels in patients with major depressive disorder: a preliminary meta-analysis under MOOSE guidelines. Medicines 95, e4563 (2016).

    Google Scholar 

  81. Hoveling, L. A., Liefbroer, A. C., Schweren, L. J. S., Bultmann, U. & Smidt, N. Socioeconomic differences in major depressive disorder onset among adults are partially explained by lifestyle factors: a longitudinal analysis of the Lifelines Cohort Study. J. Affect Disord. 314, 309–317 (2022).

    Google Scholar 

  82. Reuss, B., Dono, R. & Unsicker, K. Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23, 6404–6412 (2003).

    Google Scholar 

  83. Collins, P. Y. et al. Grand challenges in global mental health. Nature 475, 27–30 (2011).

    Google Scholar 

  84. van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).

    Google Scholar 

  85. Leardini-Tristao, M. et al. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. J. Neuroinflamm. 17, 117 (2020).

    Google Scholar 

  86. Malkiewicz, M. A. et al. Blood-brain barrier permeability and physical exercise. J. Neuroinflamm. 16, 15 (2019).

    Google Scholar 

  87. Qu, C. et al. Protection of blood-brain barrier as a potential mechanism for enriched environments to improve cognitive impairment caused by chronic cerebral hypoperfusion. Behav. Brain Res. 379, 112385 (2020).

    Google Scholar 

  88. Souza, P. S. et al. Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood-brain barrier disruption. Mol. Neurobiol. 54, 4723–4737 (2017).

    Google Scholar 

  89. Bendfeldt, K., Radojevic, V., Kapfhammer, J. & Nitsch, C. Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood-brain barrier. J. Neurosci. 27, 3260–3267 (2007).

    Google Scholar 

  90. Olson, A. K., Eadie, B. D., Ernst, C. & Christie, B. R. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16, 250–260 (2006).

    Google Scholar 

  91. Viola, G. G. et al. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res. 1274, 47–54 (2009).

    Google Scholar 

  92. Kentner, A. C., Speno, A. V., Doucette, J. & Roderick, R. C. The contribution of environmental enrichment to phenotypic variation in mice and rats. eNeuro 8 https://doi.org/10.1523/ENEURO.0539-20.2021 (2021).

  93. Nakamura, K., Kikusui, T., Takeuchi, Y. & Mori, Y. The critical role of familiar urine odor in diminishing territorial aggression toward a castrated intruder in mice. Physiol. Behav. 90, 512–517 (2007).

    Google Scholar 

  94. Shemesh, Y. & Chen, A. A paradigm shift in translational psychiatry through rodent neuroethology. Mol. Psychiatry 28, 993–1003 (2023).

    Google Scholar 

  95. Coulombe, V. et al. The Tailtag: A multi-mouse tracking system to measure social dynamics in complex environments. Neuropsychopharmacology 50, 1336–1345 (2025).

    Google Scholar 

  96. Collignon, A., Dion-Albert, L., Menard, C. & Coelho-Santos, V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 21, 2 (2024).

    Google Scholar 

  97. Bikfalvi, A., Klein, S., Pintucci, G. & Rifkin, D. B. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26–45 (1997).

    Google Scholar 

  98. Steringer, J. P. et al. Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. Elife 6 https://doi.org/10.7554/eLife.28985 (2017).

  99. Doney, E. et al. Characterizing the blood-brain barrier and gut barrier with super-resolution imaging: opportunities and challenges. Neurophotonics 10, 044410 (2023).

    Google Scholar 

  100. Schroder, M. S. et al. Imaging the fibroblast growth factor receptor network on the plasma membrane with DNA-assisted single-molecule super-resolution microscopy. Methods 193, 38–45 (2021).

    Google Scholar 

  101. Murgo, E., Falco, G., Serviddio, G., Mazzoccoli, G. & Colangelo, T. Circadian patterns of growth factor receptor-dependent signaling and implications for carcinogenesis. Cell Commun. Signal 22, 319 (2024).

    Google Scholar 

  102. Zucchini, S. et al. Fgf-2 overexpression increases excitability and seizure susceptibility but decreases seizure-induced cell loss. J. Neurosci. 28, 13112–13124 (2008).

    Google Scholar 

  103. Yoshimura, S. et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc. Natl. Acad. Sci. USA 98, 5874–5879 (2001).

    Google Scholar 

  104. Miller, D. L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell Biol. 20, 2260–2268 (2000).

    Google Scholar 

  105. Yang, X. et al. Fibroblast growth factor signaling in the vasculature. Curr. Atheroscler. Rep. 17, 509 (2015).

    Google Scholar 

  106. Asimaki, O., Leondaritis, G., Lois, G., Sakellaridis, N. & Mangoura, D. Cannabinoid 1 receptor-dependent transactivation of fibroblast growth factor receptor 1 emanates from lipid rafts and amplifies extracellular signal-regulated kinase 1/2 activation in embryonic cortical neurons. J. Neurochem. 116, 866–873 (2011).

    Google Scholar 

  107. Dudek, K. A. et al. Astrocytic cannabinoid receptor 1 promotes resilience by dampening stress-induced blood-brain barrier alterations. Nat. Neurosci. 28, 766–782 (2025).

    Google Scholar 

  108. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Google Scholar 

  109. Tang, M. M., Lin, W. J., Pan, Y. Q. & Li, Y. C. Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression. Front. Cell Neurosci. 12, 255 (2018).

    Google Scholar 

  110. Hashimoto, Y., Greene, C., Munnich, A. & Campbell, M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 20, 22 (2023).

    Google Scholar 

  111. Nitta, T. et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003).

    Google Scholar 

  112. Chaudhury, S. et al. FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3. Proc. Natl. Acad. Sci. USA 111, 11834–11839 (2014).

    Google Scholar 

  113. Schlingmann, B. et al. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat. Commun. 7, 12276 (2016).

    Google Scholar 

  114. Tang, D., He, Y., Li, W. & Li, H. Wnt/beta-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast. Exp. Mol. Med. 51, 1–16 (2019).

    Google Scholar 

  115. Hussain, B. et al. Endothelial beta-catenin deficiency causes blood-brain barrier breakdown via enhancing the paracellular and transcellular permeability. Front. Mol. Neurosci. 15, 895429 (2022).

    Google Scholar 

  116. Liebner, S. et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 183, 409–417 (2008).

    Google Scholar 

  117. Jang, J. et al. WNT/beta-catenin pathway modulates the TNF-alpha-induced inflammatory response in bronchial epithelial cells. Biochem. Biophys. Res. Commun. 484, 442–449 (2017).

    Google Scholar 

  118. Shim, S. M. et al. Role of S5b/PSMD5 in proteasome inhibition caused by TNF-alpha/NFkappaB in higher eukaryotes. Cell Rep. 2, 603–615 (2012).

    Google Scholar 

  119. Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    Google Scholar 

  120. Gaughran, F., Payne, J., Sedgwick, P. M., Cotter, D. & Berry, M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res. Bull. 70, 221–227 (2006).

    Google Scholar 

  121. He, S. et al. Decreased serum fibroblast growth factor - 2 levels in pre- and post-treatment patients with major depressive disorder. Neurosci. Lett. 579, 168–172 (2014).

    Google Scholar 

  122. Liu, X. et al. Elevated serum levels of FGF-2, NGF and IGF-1 in patients with manic episode of bipolar disorder. Psychiatry Res. 218, 54–60 (2014).

    Google Scholar 

  123. Koledova, Z. et al. Fibroblast Growth Factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front. Cell Dev. Biol. 7, 331 (2019).

    Google Scholar 

  124. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001).

    Google Scholar 

  125. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  126. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Google Scholar 

  127. Gassmann, M., Grenacher, B., Rohde, B. & Vogel, J. Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30, 1845–1855 (2009).

    Google Scholar 

  128. Pillai-Kastoori, L., Schutz-Geschwender, A. R. & Harford, J. A. A systematic approach to quantitative Western blot analysis. Anal. Biochem. 593, 113608 (2020).

    Google Scholar 

  129. Suarez-Arnedo, A. et al. An image J plugin for the high-throughput image analysis of in vitro scratch wound healing assays. PLoS One 15, e0232565 (2020).

    Google Scholar 

  130. Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Canadian Institutes for Health Research (CIHR, Project Grant #427011 and #495641 to C.M.), Fonds de recherche du Quebec—Santé (FRQS, Junior 2 salary award to C.M.) and C.M. Sentinel North Research Chair funded by Canada First Research Excellence Fund. S.E.J.P., J.L.S., A.Cadoret, A.Collignon, L.B.B., B.D., L.M.B., L.D.A., K.A.D. are supported by scholarships from CIHR, Réseau québécois sur le suicide, les troubles de l’humeur et les troubles associés (RQSHA), Natural Sciences and Engineering Research Council of Canada (NSERC), NeuroQuebec and FRQS. The Signature Consortium acknowledges contributions to the Biobank Signature of the CR-IUSMM (www.banquesignature.ca). The Biobank Signature received funding from the Fondation de l’Institut Universitaire de Santé Mentale de Montréal, Bell cause pour la cause, and the RQSHA. The authors would like to sincerely thank Dr. Jack McGugan from the Department of Anesthesiology and Perioperative Medicine at Queen’s University, who performed the 3D printing of our scratch wound template.

Author information

Authors and Affiliations

  1. Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec, QC, Canada

    Sam E. J. Paton, José L. Solano, Alice Cadoret, Adeline Collignon, Luisa Bandeira Binder, Béatrice Daigle, Laura Menegatti Bevilacqua, Émanuelle Richer, François Coulombe-Rozon, Laurence Dion-Albert, Katarzyna A. Dudek, Manon Lebel & Caroline Ménard

  2. Institut Universitaire en Santé Mentale de Montréal, Centre Intégré Universitaire de Santé et Service Sociaux Est, Montreal, QC, Canada

    Philippe Beauchamp-Kerr, Felix-Antoine Berube, Janick Boissonneault, Francois Borgeat, Lionel Cailhol, Pierre David, Simon Ducharme, Alexandre Dumais, Helen Findlay, Stéphane Guay, Steve Geoffrion, Charles-Edouard Giguere, Roger Godbout, Alexandre Hudon, Robert-Paul Juster, Real Labelle, Marc Lavoie, Myriam Lemyre, Alain Lesage, Cécile Le Page, Olivier Lipp, Sonia Lupien, Jean-Pierre Melun, Marie-France Marin, Carolle Marullo, Francois Noel, Jean-Francois Pelletier, Vincent Tascherau-Dumouchel, Pierrich Plusquellec, Stephane Potvin, Ahmed-Jérome Romain, Marc Sasseville, Daniel St-Laurent, Manuel Serrano, Emmanuel Stip, Christo Todorov, Valerie Tourjman, Samir Taga, Claudia Trudel-Fitzgerald, Martha Francoise Ulysse & Andreas Ziegenhorn

Authors
  1. Sam E. J. Paton
    View author publications

    Search author on:PubMed Google Scholar

  2. José L. Solano
    View author publications

    Search author on:PubMed Google Scholar

  3. Alice Cadoret
    View author publications

    Search author on:PubMed Google Scholar

  4. Adeline Collignon
    View author publications

    Search author on:PubMed Google Scholar

  5. Luisa Bandeira Binder
    View author publications

    Search author on:PubMed Google Scholar

  6. Béatrice Daigle
    View author publications

    Search author on:PubMed Google Scholar

  7. Laura Menegatti Bevilacqua
    View author publications

    Search author on:PubMed Google Scholar

  8. Émanuelle Richer
    View author publications

    Search author on:PubMed Google Scholar

  9. François Coulombe-Rozon
    View author publications

    Search author on:PubMed Google Scholar

  10. Laurence Dion-Albert
    View author publications

    Search author on:PubMed Google Scholar

  11. Katarzyna A. Dudek
    View author publications

    Search author on:PubMed Google Scholar

  12. Manon Lebel
    View author publications

    Search author on:PubMed Google Scholar

  13. Caroline Ménard
    View author publications

    Search author on:PubMed Google Scholar

Consortia

Signature Consortium

  • Philippe Beauchamp-Kerr
  • , Felix-Antoine Berube
  • , Janick Boissonneault
  • , Francois Borgeat
  • , Lionel Cailhol
  • , Pierre David
  • , Simon Ducharme
  • , Alexandre Dumais
  • , Helen Findlay
  • , Stéphane Guay
  • , Steve Geoffrion
  • , Charles-Edouard Giguere
  • , Roger Godbout
  • , Alexandre Hudon
  • , Robert-Paul Juster
  • , Real Labelle
  • , Marc Lavoie
  • , Myriam Lemyre
  • , Alain Lesage
  • , Cécile Le Page
  • , Olivier Lipp
  • , Sonia Lupien
  • , Jean-Pierre Melun
  • , Marie-France Marin
  • , Carolle Marullo
  • , Francois Noel
  • , Jean-Francois Pelletier
  • , Vincent Tascherau-Dumouchel
  • , Pierrich Plusquellec
  • , Stephane Potvin
  • , Ahmed-Jérome Romain
  • , Marc Sasseville
  • , Daniel St-Laurent
  • , Manuel Serrano
  • , Emmanuel Stip
  • , Christo Todorov
  • , Valerie Tourjman
  • , Samir Taga
  • , Claudia Trudel-Fitzgerald
  • , Martha Francoise Ulysse
  •  & Andreas Ziegenhorn

Contributions

S.E.J.P. and C.M. designed the research. S.E.J.P., J.L.S., A.Cadoret, A.Collignon, L.B.B., B.D., L.M.B., E.R., F.C.R., L.D.A., K.A.D., and M.L. performed the research, including behavioral experiments, molecular, biochemical, and morphological analysis. The Signature Consortium contributed the human blood samples and related demographic and sociodemographic data. S.E.J.P., J.L.S. and C.M. analyzed the data and wrote the manuscript, which was edited by all authors.

Corresponding author

Correspondence to Caroline Ménard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yihai Cao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data 1

Source Data 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paton, S.E.J., Solano, J.L., Cadoret, A. et al. Environmental enrichment and physical exercise prevent stress-induced social avoidance and blood-brain barrier alterations via Fgf2. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68058-9

Download citation

  • Received: 20 January 2025

  • Accepted: 16 December 2025

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68058-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing