Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Dynamins maintain nuclear envelope homeostasis and genome stability
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Dynamins maintain nuclear envelope homeostasis and genome stability

  • Célia Aveleira1,
  • Thibaud Martial  ORCID: orcid.org/0009-0008-3418-58552,
  • Loïc Carrique  ORCID: orcid.org/0000-0001-5332-85933,
  • Rita Gaspar1,
  • Ana Caulino-Rocha1,
  • Izaak Myatt2,
  • Franz Wendler2,
  • Pauline Lascaux  ORCID: orcid.org/0000-0003-3935-67954,
  • Misha Le Claire3,
  • James Bancroft2,
  • Carl Smythe5,
  • Kristijan Ramadan4,6,
  • Nuno Raimundo  ORCID: orcid.org/0000-0002-5988-91291,7,8 &
  • …
  • Ira Milosevic  ORCID: orcid.org/0000-0001-6440-37631,2 

Nature Communications , Article number:  (2026) Cite this article

  • 1875 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular neuroscience
  • Endocytosis
  • Nucleus

Abstract

The nuclear envelope is a protective barrier for the genome and a mechanotransduction interface between cytoplasm and nucleus, whose malfunction disrupts nucleocytoplasmic transport, compromises DNA repair, accelerates telomere shortening, and promotes genomic instability. Mechanisms governing nuclear envelope remodeling and maintenance in interphase and post-mitotic cells remain poorly understood. Here, we report a role for dynamins, a family of essential brain-enriched membrane- and microtubule-binding GTPases, in preserving nuclear envelope and genomic homeostasis. Cells lacking dynamins exhibit nuclear envelope dysmorphisms, including buds with long narrow necks where damaged DNA frequently accumulates. These cells also show impaired autophagic clearance, reduced levels of key DNA repair proteins, and aberrant microtubules. Nocodazole treatment restores nuclear morphology and reduces DNA damage. Collectively, the data reveal that dynamins promote nuclear envelope homeostasis and removal of damaged DNA via their GTPase activity and interaction with microtubules, providing insights into mechanisms that uphold genome stability and counteract aging-related pathologies.

Similar content being viewed by others

Nuclear and genome dynamics underlying DNA double-strand break repair

Article 17 March 2025

A guide to studying 3D genome structure and dynamics in the kidney

Article 15 October 2024

Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks

Article Open access 01 November 2024

Data availability

Key primary and all secondary data are included in the paper and Supplementary Information file, Source data, as well as the reporting summary. The newly generated constructs, and additional primary data (a part of still ongoing collaborative study) are available from the corresponding author. Source data are provided with this paper.

References

  1. Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

    Google Scholar 

  2. Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 23, 583–602 (2022).

    Google Scholar 

  3. Shah, P., Wolf, K. & Lammerding, J. Bursting the bubble—nuclear envelope rupture as a path to genomic instability? Trends Cell Biol. 27, 546–555 (2017).

    Google Scholar 

  4. Pathak, R. U., Soujanya, M. & Mishra, R. K. Deterioration of nuclear morphology and architecture: a hallmark of senescence and aging. Ageing Res. Rev. 67, 101264 (2021).

    Google Scholar 

  5. Karoutas, A. & Akhtar, A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 23, 116–126 (2021).

    Google Scholar 

  6. Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432 (1989).

    Google Scholar 

  7. Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).

    Google Scholar 

  8. Scaife, R. & Margolis, R. L. Biochemical and immunochemical analysis of rat brain dynamin interaction with microtubules and organelles in vivo and in vitro. J. Cell Biol. 111, 3023–3033 (1990).

    Google Scholar 

  9. Maeda, K., Nakata, T., Noda, Y., Sato-Yoshitake, R. & Hirokawa, N. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell 3, 1181–1194 (1992).

    Google Scholar 

  10. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374, 186–190 (1995).

    Google Scholar 

  11. Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    Google Scholar 

  12. Thompson, H. M., Cao, H., Chen, J., Euteneuer, U. & McNiven, M. A. Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat. Cell Biol. 6, 335–342 (2004).

    Google Scholar 

  13. Tanabe, K. & Takei, K. Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot-Marie-Tooth mutant. J. Cell Biol. 185, 939–948 (2009).

    Google Scholar 

  14. Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    Google Scholar 

  15. Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).

    Google Scholar 

  16. Kar, U. P., Dey, H. & Rahaman, A. Cardiolipin targets a dynamin-related protein to the nuclear membrane. eLife 10, e64416 (2021).

    Google Scholar 

  17. Mannino, P. J. et al. Quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope. Nat. Cell Biol. 27, 464–476 (2025).

    Google Scholar 

  18. Papandreou, M. E., Konstantinidis, G. & Tavernarakis, N. Nucleophagy delays aging and preserves germline immortality. Nat. Aging 3, 34–46 (2023).

    Google Scholar 

  19. Fonseca, T. B., Sánchez-Guerrero, Á, Milosevic, I. & Raimundo, N. Mitochondrial fission requires DRP1 but not dynamins. Nature 570, E34–E42 (2019).

    Google Scholar 

  20. Park, R. J. et al. Dynamin triple knockout cells reveal off-target effects of commonly used dynamin inhibitors. J. Cell Sci. 126, 5305–5312 (2013).

    Google Scholar 

  21. Janssen, A. F. J., Breusegem, S. Y. & Larrieu, D. Current methods and pipelines for image-based quantitation of nuclear shape and nuclear envelope abnormalities. Cells 11, 347 (2022).

    Google Scholar 

  22. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 101, 8963–8968 (2004).

    Google Scholar 

  23. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Google Scholar 

  24. Lattanzi, G. et al. Lamins are rapamycin targets that impact human longevity: a study in centenarians. J. Cell Sci. 127, 147–157 (2014).

    Google Scholar 

  25. Matias, I. et al. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 21, e13521 (2022).

    Google Scholar 

  26. Ferreira-Marques, M. et al. Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome. Aging Cell 22, e13983 (2023).

    Google Scholar 

  27. De Silva, N. S. et al. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. Nat. Aging 3, 1251–1268 (2023).

    Google Scholar 

  28. Catarinella, G. et al. SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome. Cell Death Dis. 13, 737 (2022).

    Google Scholar 

  29. Sundborger, A. C. et al. A dynamin mutant defines a superconstricted prefission state. Cell Rep. 8, 734–742 (2014).

    Google Scholar 

  30. Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 26, 559–566 (2007).

    Google Scholar 

  31. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Google Scholar 

  32. Ariotti, N. et al. Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biol. 16, e2005473 (2018).

    Google Scholar 

  33. Schulze, R. J. et al. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315–326 (2013).

    Google Scholar 

  34. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Google Scholar 

  35. Kang, S. M. et al. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Commun. Biol. 4, 5 (2021).

    Google Scholar 

  36. Berger, C. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat. Methods 20, 499–511 (2023).

    Google Scholar 

  37. Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell, https://doi.org/10.1016/j.cell.2024.08.020 (2024).

  38. Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015).

    Google Scholar 

  39. De Vos, W. H. et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011).

    Google Scholar 

  40. Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    Google Scholar 

  41. Karoutas, A. et al. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat. Cell Biol. 21, 1248–1260 (2019).

    Google Scholar 

  42. Gesson, K. et al. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 26, 462–473 (2016).

    Google Scholar 

  43. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Google Scholar 

  44. Wang, B., Matsuoka, S., Carpenter, P. & Elledge, S. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    Google Scholar 

  45. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    Google Scholar 

  46. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Google Scholar 

  47. Chen, X., Paudyal, S. C., Chin, R. I. & You, Z. PCNA promotes processive DNA end resection by Exo1. Nucleic Acids Res. 41, 9325–9338 (2013).

    Google Scholar 

  48. Chernikova, S. B. et al. Dynamin impacts homology-directed repair and breast cancer response to chemotherapy. J. Clin. Investig. 128, 5307–5321 (2018).

    Google Scholar 

  49. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 148, 104398 (2019).

    Google Scholar 

  50. Thomas, A. & Pommier, Y. Targeting topoisomerase I in the era of precision medicine. Clin. Cancer Res. 25, 6581–6589 (2019).

    Google Scholar 

  51. Burute, M. & Kapitein, L. C. Cellular logistics: unraveling the interplay between microtubule organization and intracellular transport. Annu. Rev. Cell Dev. Biol. 35, 29–54 (2019).

    Google Scholar 

  52. Lottersberger, F., Karssemeijer, R. A., Dimitrova, N. & de Lange, T. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163, 880–893 (2015).

    Google Scholar 

  53. Shokrollahi, M. et al. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat. Struct. Mol. Biol. 31, 1319–1330 (2024).

    Google Scholar 

  54. Vasquez, R. J., Howell, B., Yvon, A. M., Wadsworth, P. & Cassimeris, L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell 8, 973–985 (1997).

    Google Scholar 

  55. Chen, J. G. & Horwitz, S. B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res. 62, 1935–1938 (2002).

    Google Scholar 

  56. Wu, Y. et al. A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. Elife 3, e01621 (2014).

    Google Scholar 

  57. Lamm, N., Rogers, S. & Cesare, A. J. Chromatin mobility and relocation in DNA repair. Trends Cell Biol. 31, 843–855 (2021).

    Google Scholar 

  58. Wang, Y. et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol. Cell 63, 34–48 (2016).

    Google Scholar 

  59. Qiang, L. et al. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy 12, 357–368 (2016).

    Google Scholar 

  60. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Google Scholar 

  61. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    Google Scholar 

  62. Liu, E. Y. et al. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc. Natl. Acad. Sci. USA 112, 773–778 (2015).

    Google Scholar 

  63. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Google Scholar 

  64. Herve, S. et al. Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint. Nat. Cell Biol. 27, 73–86 (2025).

    Google Scholar 

  65. Luithle, N. et al. Torsin ATPases influence chromatin interaction of the Torsin regulator LAP1. eLife 9, e63614 (2020).

    Google Scholar 

  66. Nabbi, A. & Riabowol, K. Rapid isolation of nuclei from cells in vitro. Cold Spring Harb. Protoc. 2015, 769–772 (2015).

    Google Scholar 

  67. Gowrisankaran, S. et al. Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nat. Commun. 11, 1266 (2020).

    Google Scholar 

  68. Aveleira, C. A. et al. Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 112, E1642–E1651 (2015).

    Google Scholar 

  69. Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D. & Clement, M. V. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2, 457–465 (2014).

    Google Scholar 

  70. Olive, P. L., Banáth, J. P. & Durand, R. E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 122, 86–94 (1990).

    Google Scholar 

  71. Johnson, E., Seiradake, E. & Jones, E. Y. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci. Rep. 5, 9583 (2015).

    Google Scholar 

  72. Eisenstein, F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2023).

    Google Scholar 

  73. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Google Scholar 

  74. Zheng, S. et al. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6, 100068 (2022).

    Google Scholar 

  75. Buchholz, T.-O. et al. Content-aware image restoration for electron microscopy. in (eds Müller-Reichert, T. & Pigino, G.) Methods in Cell Biology, 277–289 (Academic Press, 2019).

  76. Lamm, L. et al. MemBrain: a deep learning-aided pipeline for detection of membrane proteins in Cryo-electron tomograms. Comput. Methods Prog. Biomed. 224, 106990 (2022).

    Google Scholar 

  77. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Google Scholar 

  78. Ermel, U. H., Arghittu, S. M. & Frangakis, A. S. ArtiaX: an electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci. 31, e4472 (2022).

    Google Scholar 

  79. Frangakis, A. S. It’s noisy out there! A review of denoising techniques in cryo-electron tomography. J. Struct. Biol. 213, 107804 (2021).

    Google Scholar 

  80. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank Pietro De Camilli (Yale University) for providing dynamin conditional cells and plasmids, and K. Zhang and Dr R. Dias for assistance with data analysis. This work was supported by Wellcome Trust Investigator Award in Science (224361/Z/21/Z), La Caixa Foundation (HR22-00854) and the John Black Foundation awarded to I.M., as well as the EU-Horizon 2020 MIA-Portugal teaming grant (857524). N.R. received support from FCT ERC-Portugal and Four Diamonds Paediatric Cancer Research Funds. K.R. received support from the Medical Research Council (MRC) programme (MR/X006409/1), Breast Cancer Now (2022.11PR1570), Ministry of Education Start-Up Grant (023917-00001, Singapore), and the Toh Kian Chui Distinguished Professorship Award. P.L. was funded by the Luxembourg National Fund (14548187), and M.L.C. was supported by a Wellcome Trust DPhil studentship. We acknowledge the Oxford Particle Imaging Centre for access to electron microscopy equipment, and computational resources were supported by the Wellcome Trust Core Award (203141/Z/16/Z) with additional support from the NIHR Oxford BRC. Molecular graphics and analyses were performed using UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California San Francisco, with support from NIH P41-GM103311. The views expressed are those of the authors and do not necessarily reflect those of the NHS, the NIHR, or the Department of Health.

Author information

Authors and Affiliations

  1. Multidisciplinary Institute of Aging, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal

    Célia Aveleira, Rita Gaspar, Ana Caulino-Rocha, Nuno Raimundo & Ira Milosevic

  2. Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK

    Thibaud Martial, Izaak Myatt, Franz Wendler, James Bancroft & Ira Milosevic

  3. Division of Structural Biology (STRUBI), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK

    Loïc Carrique & Misha Le Claire

  4. Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK

    Pauline Lascaux & Kristijan Ramadan

  5. School of Biosciences, University of Sheffield, Sheffield, UK

    Carl Smythe

  6. Cancer Discovery and Regenerative Medicine Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

    Kristijan Ramadan

  7. Department of Cell and Biological Systems, Penn State College of Medicine, Hershey, PA, USA

    Nuno Raimundo

  8. Penn State Cancer Institute, Hershey, PA, USA

    Nuno Raimundo

Authors
  1. Célia Aveleira
    View author publications

    Search author on:PubMed Google Scholar

  2. Thibaud Martial
    View author publications

    Search author on:PubMed Google Scholar

  3. Loïc Carrique
    View author publications

    Search author on:PubMed Google Scholar

  4. Rita Gaspar
    View author publications

    Search author on:PubMed Google Scholar

  5. Ana Caulino-Rocha
    View author publications

    Search author on:PubMed Google Scholar

  6. Izaak Myatt
    View author publications

    Search author on:PubMed Google Scholar

  7. Franz Wendler
    View author publications

    Search author on:PubMed Google Scholar

  8. Pauline Lascaux
    View author publications

    Search author on:PubMed Google Scholar

  9. Misha Le Claire
    View author publications

    Search author on:PubMed Google Scholar

  10. James Bancroft
    View author publications

    Search author on:PubMed Google Scholar

  11. Carl Smythe
    View author publications

    Search author on:PubMed Google Scholar

  12. Kristijan Ramadan
    View author publications

    Search author on:PubMed Google Scholar

  13. Nuno Raimundo
    View author publications

    Search author on:PubMed Google Scholar

  14. Ira Milosevic
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization I.M. and C.A.; Experimentation C.A., T.M., L.C., R.G., F.W., N.R., and I.M.; Analysis C.A., T.M., L.C., M.L.C., I.My., J.B., N.R., and I.M.; Resources: I.M., N.R., K.R., P.L., A.C.R., and C.S.; Funding: N.R., K.R., and I.M.; Manuscript, figure preparation and revision: I.M., N.R., C.A., and T.M. (all coauthors contributed to the final manuscript).

Corresponding author

Correspondence to Ira Milosevic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary File

Movie 1

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aveleira, C., Martial, T., Carrique, L. et al. Dynamins maintain nuclear envelope homeostasis and genome stability. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68130-4

Download citation

  • Received: 01 April 2025

  • Accepted: 18 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68130-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing