Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Endothelial IRE1α promotes thrombospondin-1 mRNA decay and supports metabolic stress adaptation of pancreatic islets
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Endothelial IRE1α promotes thrombospondin-1 mRNA decay and supports metabolic stress adaptation of pancreatic islets

  • Xiaoge Zhang  ORCID: orcid.org/0000-0003-1560-99031,2 na1,
  • Shijia Huang  ORCID: orcid.org/0000-0003-1961-43121,2 na1,
  • Peng Chen  ORCID: orcid.org/0009-0004-3092-13261,2 na1,
  • Ziyin Zhang3,
  • Jie Cai1 nAff14,
  • Ting Yu3,
  • Zhixiong Xia4,
  • Shubo Yuan5,
  • Yong Chen  ORCID: orcid.org/0000-0002-0723-81051,
  • Mengjuan Gao1,2,
  • Zhuyin Wu  ORCID: orcid.org/0000-0002-5132-12561,2,
  • Jiongyi He1,2,
  • Yifei Liao6,
  • Qi Fu  ORCID: orcid.org/0000-0002-2463-31237,
  • Qiong Yang8,
  • Tailang Yin  ORCID: orcid.org/0000-0003-2032-09019,
  • Jie Liu10,
  • Ke Song  ORCID: orcid.org/0000-0001-7150-527411,
  • Sheng-Zhong Duan12,
  • Tao Yang  ORCID: orcid.org/0000-0001-6375-36227,
  • Liangyou Rui  ORCID: orcid.org/0000-0001-8433-813713,
  • Yi Arial Zeng  ORCID: orcid.org/0000-0003-1898-80995,
  • Zhuo-Xian Meng  ORCID: orcid.org/0000-0001-8177-55933,
  • Jianmiao Liu  ORCID: orcid.org/0009-0006-1524-78416 &
  • …
  • Yong Liu  ORCID: orcid.org/0000-0001-7771-41811,2 

Nature Communications , Article number:  (2026) Cite this article

  • 2135 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Angiogenesis
  • Homeostasis
  • Metabolic diseases

Abstract

Vascular endothelial cells (ECs) play pivotal roles in maintaining metabolic tissue homeostasis, and EC dysfunction is associated with obesity and metabolic disorders. The mammalian ER stress sensor IRE1α kinase/RNase responds to metabolic cues, but it remains unclear whether endothelial IRE1α is implicated in controlling systemic metabolism. Here we show that genetic depletion of IRE1α in ECs leads to maladaptation of pancreatic islets under obesity-associated metabolic stress. We find that in high-fat diet-fed male mice, loss of IRE1α in ECs has no significant impact upon adiposity, but unexpectedly results in glucose intolerance with impaired insulin secretion, accompanied by blunted intra-islet angiogenesis and compensatory islet growth. Mechanistically, IRE1α RNase decays the mRNA encoding the endogenous anti-angiogenic factor thrombospondin-1 (THBS1/TSP1) in islet ECs. These findings thus uncover a critical role of the endothelial IRE1α suppression of THBS1 in governing the vascular support that enables the functional adaptation of islets to metabolic stress.

Similar content being viewed by others

Bax Inhibitor-1 preserves pancreatic β-cell proteostasis by limiting proinsulin misfolding and programmed cell death

Article Open access 14 May 2024

Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes

Article 28 June 2021

Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis

Article Open access 29 May 2024

Data availability

The raw RNA-seq data generated in this study have been deposited in the GEO database under the accession code GSE263586. In addition, we also analyzed previously published single-cell RNA-seq data GSE203376 from primary pancreatic islets in normal chow- versus HFD-fed mice. Source data are provided with this paper.

References

  1. Ricard, N., Bailly, S., Guignabert, C. & Simons, M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat. Rev. Cardiol. 18, 565–580 (2021).

    Google Scholar 

  2. Augustin, H. G. & Koh, G. Y. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science (New York, N.Y.) 357 https://doi.org/10.1126/science.aal2379 (2017).

  3. Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    Google Scholar 

  4. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e720 (2020).

    Google Scholar 

  5. Paik, D. T. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142, 1848–1862 (2020).

    Google Scholar 

  6. Pi, X., Xie, L. & Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res 123, 477–494 (2018).

    Google Scholar 

  7. Hasan, S. S. & Fischer, A. The Endothelium: an active regulator of lipid and glucose homeostasis. Trends cell Biol. 31, 37–49 (2021).

    Google Scholar 

  8. AlZaim, I., de Rooij, L., Sheikh, B. N., Börgeson, E. & Kalucka, J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat. Rev. Endocrinol. 19, 691–707 (2023).

    Google Scholar 

  9. Graupera, M. & Claret, M. Endothelial cells: new players in obesity and related metabolic disorders. Trends Endocrinol. Metab. 29, 781–794 (2018).

    Google Scholar 

  10. Cooke, J. P. Endotheliopathy of Obesity. Circulation 142, 380–383 (2020).

    Google Scholar 

  11. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Google Scholar 

  12. Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    Google Scholar 

  13. Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest 127, 74–82 (2017).

    Google Scholar 

  14. Lenna, S., Han, R. & Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 66, 530–537 (2014).

    Google Scholar 

  15. Battson, M. L., Lee, D. M. & Gentile, C. L. Endoplasmic reticulum stress and the development of endothelial dysfunction. Am. J. Physiol. Heart Circulatory Physiol. 312, H355–h367 (2017).

    Google Scholar 

  16. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Google Scholar 

  17. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Sci. (N. Y.) 334, 1081–1086 (2011).

    Google Scholar 

  18. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    Google Scholar 

  19. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Google Scholar 

  20. Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031–1039 (1997).

    Google Scholar 

  21. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Google Scholar 

  22. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. cell Biol. 186, 323–331 (2009).

    Google Scholar 

  23. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 39, 245–254 (2014).

    Google Scholar 

  24. Huang, S., Xing, Y. & Liu, Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J. Biol. Chem. 294, 18726–18741 (2019).

    Google Scholar 

  25. Chen, Y. et al. Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nat. Metab. 4, 1166–1184 (2022).

    Google Scholar 

  26. Shan, B. et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 18, 519–529 (2017).

    Google Scholar 

  27. Binet, F. & Sapieha, P. ER stress and angiogenesis. Cell Metab. 22, 560–575 (2015).

    Google Scholar 

  28. Zeng, L. et al. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127, 1712–1722 (2013).

    Google Scholar 

  29. Shao, M. et al. Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling. Nat. Commun. 5, 3528 (2014).

    Google Scholar 

  30. Monvoisin, A. et al. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev. Dyn. 235, 3413–3422 (2006).

    Google Scholar 

  31. Casimiro, I., Stull, N. D., Tersey, S. A. & Mirmira, R. G. Phenotypic sexual dimorphism in response to dietary fat manipulation in C57BL/6J mice. J. Diabetes Complications 35, 107795 (2021).

    Google Scholar 

  32. Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab. 27, 57–67 (2018).

    Google Scholar 

  33. Wang, D. et al. Long-Term expansion of pancreatic islet organoids from resident procr(+) progenitors. Cell 180, 1198–1211.e1119 (2020).

    Google Scholar 

  34. Conrad, E., Stein, R. & Hunter, C. S. Revealing transcription factors during human pancreatic β cell development. Trends Endocrinol. Metab. 25, 407–414 (2014).

    Google Scholar 

  35. Staels, W., Heremans, Y., Heimberg, H. & De Leu, N. VEGF-A and blood vessels: a beta cell perspective. Diabetologia 62, 1961–1968 (2019).

    Google Scholar 

  36. Richards, O. C., Raines, S. M. & Attie, A. D. The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr. Rev. 31, 343–363 (2010).

    Google Scholar 

  37. Eberhard, D., Kragl, M. & Lammert, E. Giving and taking’: endothelial and beta-cells in the islets of Langerhans. Trends Endocrinol. Metab. 21, 457–463 (2010).

    Google Scholar 

  38. Hogan, M. F. & Hull, R. L. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60, 952–959 (2017).

    Google Scholar 

  39. Lee, Y. S. et al. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion. Cell 153, 413–425 (2013).

    Google Scholar 

  40. Obata, A. et al. Vascular endothelial PDPK1 plays a pivotal role in the maintenance of pancreatic beta cell mass and function in adult male mice. Diabetologia 62, 1225–1236 (2019).

    Google Scholar 

  41. Abels, M. et al. CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion. Diabetologia 59, 1928–1937 (2016).

    Google Scholar 

  42. Ghislain, J. & Poitout, V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat. Rev. Endocrinol. 17, 162–175 (2021).

    Google Scholar 

  43. Panaro, B. L. et al. β-cell inactivation of Gpr119 unmasks incretin dependence of GPR119-mediated glucoregulation. Diabetes 66, 1626–1635 (2017).

    Google Scholar 

  44. Lawler, P. R. & Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med 2, a006627 (2012).

    Google Scholar 

  45. Gutierrez, L. S. & Gutierrez, J. Thrombospondin 1 in Metabolic Diseases. Front Endocrinol. (Lausanne) 12, 638536 (2021).

    Google Scholar 

  46. Isenberg, J. S. et al. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc. Natl. Acad. Sci. USA 102, 13141–13146 (2005).

    Google Scholar 

  47. Olerud, J. et al. Thrombospondin-1: an islet endothelial cell signal of importance for β-cell function. Diabetes 60, 1946–1954 (2011).

    Google Scholar 

  48. Erdem, N. et al. Thrombospondin-1, CD47, and SIRPα display cell-specific molecular signatures in human islets and pancreata. Am. J. Physiol. Endocrinol. Metab. 324, E347–e357 (2023).

    Google Scholar 

  49. Fu, Q. et al. Single-cell RNA sequencing combined with single-cell proteomics identifies the metabolic adaptation of islet cell subpopulations to high-fat diet in mice. Diabetologia 66, 724–740 (2023).

    Google Scholar 

  50. Arbiser, J. L. et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. USA 94, 861–866 (1997).

    Google Scholar 

  51. Porat, S. et al. Control of pancreatic β cell regeneration by glucose metabolism. Cell Metab. 13, 440–449 (2011).

    Google Scholar 

  52. Dubois, S. et al. Glucose inhibits angiogenesis of isolated human pancreatic islets. J. Mol. Endocrinol. 45, 99–105 (2010).

    Google Scholar 

  53. Dawson, D. W. et al. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717 (1997).

    Google Scholar 

  54. Isenberg, J. S. et al. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J. Biol. Chem. 281, 26069–26080 (2006).

    Google Scholar 

  55. Yao, M. et al. Thrombospondin-1 activation of signal-regulatory protein-α stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J. Am. Soc. Nephrology: JASN 25, 1171–1186 (2014).

    Google Scholar 

  56. Ghimire, K. et al. CD47 promotes age-associated deterioration in angiogenesis, blood flow and glucose homeostasis. Cells https://doi.org/10.3390/cells9071695 (2020).

  57. Bauer, E. M. et al. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovascular Res. 88, 471–481 (2010).

    Google Scholar 

  58. Volkmann, K. et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286, 12743–12755 (2011).

    Google Scholar 

  59. Cross, B. C. et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl. Acad. Sci. USA 109, E869–E878 (2012).

    Google Scholar 

  60. Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A. & Kaufman, R. J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736 (2000).

    Google Scholar 

  61. Le Thomas, A. et al. Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nat. Commun. 12, 7310 (2021).

    Google Scholar 

  62. Bondareva, O. et al. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat. Metab. 4, 1591–1610 (2022).

    Google Scholar 

  63. Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cells. Sci. Signal. 3, ra7 (2010).

    Google Scholar 

  64. Xu, T. et al. The IRE1α-XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells. Cell Res 24, 1137–1140 (2014).

    Google Scholar 

  65. Hassler, J. R. et al. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13, e1002277 (2015).

    Google Scholar 

  66. Morita, S. et al. Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25, 883–897.e888 (2017).

    Google Scholar 

  67. Lee, H. et al. Beta cell dedifferentiation induced by IRE1α deletion prevents type 1 diabetes. Cell Metab. 31, 822–836.e825 (2020).

    Google Scholar 

  68. Wang, J. et al. Isolation of mouse pancreatic islet Procr(+) progenitors and long-term expansion of islet organoids in vitro. Nat. Protoc. 17, 1359–1384 (2022).

    Google Scholar 

  69. He, S. et al. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay. J. Clin. Invest. https://doi.org/10.1172/jci143737 (2021).

  70. von Toerne, C. et al. MASP1, THBS1, GPLD1 and ApoA-IV are novel biomarkers associated with prediabetes: the KORA F4 study. Diabetologia 59, 1882–1892 (2016).

    Google Scholar 

  71. Matsuo, Y. et al. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome. Metabolism 64, 1490–1499 (2015).

    Google Scholar 

  72. Roberts, D. D. & Isenberg, J. S. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am. J. Physiol. Cell Physiol. 321, C201–c213 (2021).

    Google Scholar 

  73. Li, Y., Tong, X., Rumala, C., Clemons, K. & Wang, S. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PloS one 6, e26656 (2011).

    Google Scholar 

  74. Olerud, J., Johansson, M., Lawler, J., Welsh, N. & Carlsson, P. O. Improved vascular engraftment and graft function after inhibition of the angiostatic factor thrombospondin-1 in mouse pancreatic islets. Diabetes 57, 1870–1877 (2008).

    Google Scholar 

  75. Cunha, D. A. et al. Thrombospondin 1 protects pancreatic β-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ. 23, 1995–2006 (2016).

    Google Scholar 

  76. Tang, X. et al. Suppression of Endothelial AGO1 Promotes Adipose Tissue Browning and Improves Metabolic Dysfunction. Circulation 142, 365–379 (2020).

    Google Scholar 

  77. Jiménez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat. Med 6, 41–48 (2000).

    Google Scholar 

  78. Porpiglia, E. et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration. Cell Stem Cell 29, 1653–1668.e1658 (2022).

    Google Scholar 

  79. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Google Scholar 

  80. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  81. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  82. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    Google Scholar 

  83. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  84. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Google Scholar 

  85. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 111, E5593–E5601 (2014).

    Google Scholar 

  86. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank Qian Liu and Mingliang Tang for assistance at the animal and microscopy core facilities. This work was supported by grants from the National Natural Science Foundation of China (82230026, 32021003, 92357307, 91857204) and from the Ministry of Science and Technology of China (National Key R&D Program of China 2024YFA1802800 and 2018YFA0800700) to Y Liu, as well as from the National Natural Science Foundation of China (32501063) and the Postdoctoral Fellowship Program of CPSF (GZC20251881) to X.Z. Also supported by Shenzhen Medical Research Fund (B2402004) to Jie Liu and Y Liu.

Author information

Author notes
  1. Jie Cai

    Present address: Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China

  2. These authors contributed equally: Xiaoge Zhang, Shijia Huang, Peng Chen.

Authors and Affiliations

  1. State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Provincial Research Center for Basic Biological Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China

    Xiaoge Zhang, Shijia Huang, Peng Chen, Jie Cai, Yong Chen, Mengjuan Gao, Zhuyin Wu, Jiongyi He & Yong Liu

  2. TaiKang Center for Life and Medical Sciences; Frontier Science Center for Immunology and Metabolism; the Institute for Advanced Studies; Wuhan University, Wuhan, China

    Xiaoge Zhang, Shijia Huang, Peng Chen, Mengjuan Gao, Zhuyin Wu, Jiongyi He & Yong Liu

  3. Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

    Ziyin Zhang, Ting Yu & Zhuo-Xian Meng

  4. Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China

    Zhixiong Xia

  5. State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China

    Shubo Yuan & Yi Arial Zeng

  6. Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China

    Yifei Liao & Jianmiao Liu

  7. Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China

    Qi Fu & Tao Yang

  8. Wuhan Maternal and Child Health Hospital of Hubei province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

    Qiong Yang

  9. Reproductive Medicine Center, Renmin Hospital, Faculty of Medical Sciences, Wuhan University, Wuhan, China

    Tailang Yin

  10. Department of Pathophysiology, Shenzhen University Medical School, Shenzhen, China

    Jie Liu

  11. Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

    Ke Song

  12. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China

    Sheng-Zhong Duan

  13. Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA

    Liangyou Rui

Authors
  1. Xiaoge Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Shijia Huang
    View author publications

    Search author on:PubMed Google Scholar

  3. Peng Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Ziyin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Jie Cai
    View author publications

    Search author on:PubMed Google Scholar

  6. Ting Yu
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhixiong Xia
    View author publications

    Search author on:PubMed Google Scholar

  8. Shubo Yuan
    View author publications

    Search author on:PubMed Google Scholar

  9. Yong Chen
    View author publications

    Search author on:PubMed Google Scholar

  10. Mengjuan Gao
    View author publications

    Search author on:PubMed Google Scholar

  11. Zhuyin Wu
    View author publications

    Search author on:PubMed Google Scholar

  12. Jiongyi He
    View author publications

    Search author on:PubMed Google Scholar

  13. Yifei Liao
    View author publications

    Search author on:PubMed Google Scholar

  14. Qi Fu
    View author publications

    Search author on:PubMed Google Scholar

  15. Qiong Yang
    View author publications

    Search author on:PubMed Google Scholar

  16. Tailang Yin
    View author publications

    Search author on:PubMed Google Scholar

  17. Jie Liu
    View author publications

    Search author on:PubMed Google Scholar

  18. Ke Song
    View author publications

    Search author on:PubMed Google Scholar

  19. Sheng-Zhong Duan
    View author publications

    Search author on:PubMed Google Scholar

  20. Tao Yang
    View author publications

    Search author on:PubMed Google Scholar

  21. Liangyou Rui
    View author publications

    Search author on:PubMed Google Scholar

  22. Yi Arial Zeng
    View author publications

    Search author on:PubMed Google Scholar

  23. Zhuo-Xian Meng
    View author publications

    Search author on:PubMed Google Scholar

  24. Jianmiao Liu
    View author publications

    Search author on:PubMed Google Scholar

  25. Yong Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.Z., J.L. and Y.Liu. conceived and designed the studies. X.Z., S.H. and P.C. performed most of the experiments and analyzed the data. Z.Z., J.C., Ting.Y., Z.X., Y.C., M.G., Z.W., J.H., Y.Liao. and S.Y. conducted the cell or animal experiments. Q.F. and T.Y. assisted with scRNA-seq data. Q.Y., Tailang Y., K.S., Jie L, S.D., L.R., Y.A.Z., and Z.M. provided essential technical support and assisted with HUVEC isolation and islet analysis. X.Z., S.H., J.L. and Y.Liu wrote and edited the manuscript.

Corresponding authors

Correspondence to Zhuo-Xian Meng, Jianmiao Liu or Yong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huang, S., Chen, P. et al. Endothelial IRE1α promotes thrombospondin-1 mRNA decay and supports metabolic stress adaptation of pancreatic islets. Nat Commun (2026). https://doi.org/10.1038/s41467-025-68276-1

Download citation

  • Received: 25 May 2024

  • Accepted: 30 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41467-025-68276-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing