Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous immortalization of bovine fibroblasts following long-term expansion offers a non-transformed cell source for cultivated beef

Abstract

Spontaneously immortalized cell lines provide an essential, non-transformed resource for cultivated meat production. Although chicken fibroblasts readily immortalize in culture, bovine fibroblasts have not been shown to immortalize without genetic manipulation of TP53 or TERT. Here we demonstrate the spontaneous immortalization of fibroblast lines from Simmental and Holstein cows. We track the molecular basis of the immortalization process over 500 days of culture, corresponding to 240 population doublings. Cells entered senescence at population doubling 60, showing γH2AX foci, telomere shortening and an active senescence-associated secretory phenotype profile. Breakthroughs occurred following 400 days in culture, resulting in stable fibroblast lines. Telomerase and PGC1A activation during senescence resolve telomere shortening and mitochondrial dysfunction without activating P53, driving spontaneous immortalization. We explored the economic potential of cultivated beef production using spontaneously immortalized bovine fibroblasts, showing that price parity could be theoretically reached using continuous manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bovine dermal fibroblast isolation and propagation in vitro.
Fig. 2: Senescent phenotype in prolonged cultures of primary bovine fibroblasts.
Fig. 3: Spontaneous immortalization of bovine dermal fibroblasts from two different cow breeds.
Fig. 4: Telomere attrition and maintenance in primary and immortalized bovine fibroblasts.
Fig. 5: Genetic stability and safety of immortalized fibroblasts.
Fig. 6: Characterization of mitochondrial activity in immortalized bovine fibroblasts.
Fig. 7: Technoeconomic analysis of continuously manufactured cultivated beef.

Similar content being viewed by others

Data availability

Sequencing data are available via https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE282140. All data generated or analysed during this study are included in this published article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    Article  PubMed  CAS  Google Scholar 

  3. Hayflick, L. Cell biology of aging. BioScience 25, 629–637 (1975).

    Article  Google Scholar 

  4. Hayflick, L. Current theories of biological aging. Fed. Proc. 34, 9–13 (1975).

    PubMed  CAS  Google Scholar 

  5. Jin, P. et al. Oxidative stress and cellular senescence: roles in tumor progression and therapeutic opportunities. MedComm Oncol. 3, e70007 (2024).

    Article  CAS  Google Scholar 

  6. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tauchi, H., Matsuura, S., Kobayashi, J., Sakamoto, S. & Komatsu, K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21, 8967–8980 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fridman, A. L. & Tainsky, M. A. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 27, 5975–5987 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Oh, H. Y. et al. Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs. BMC Cell Biol. 8, 20 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harvey, D. M. & Levine, A. J. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 5, 2375–2385 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. Peto, R., Roe, F. J. C., Lee, P. N., Levy, L. & Clack, J. Cancer and ageing in mice and men. Br. J. Cancer 32, 411–426 (1975).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vincze, O. et al. Cancer risk across mammals. Nature 601, 263–267 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Preston, A. J. et al. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 9, 66 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. elife 5, e11994 (2016).

  18. Perillo, M., Punzo, A., Caliceti, C., Sell, C. & Lorenzini, A. The spontaneous immortalization probability of mammalian cell culture strains, as their proliferative capacity, correlates with species body mass, not longevity. Biomed J. 46, 100596 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4, 35–50 (2023).

    Article  PubMed  CAS  Google Scholar 

  20. Zhao, R. et al. The establishment of clonally derived chicken embryonic fibroblast cell line (CSC) with high transfection efficiency and ability as a feeder cell. J. Cell. Biochem. 119, 8841–8850 (2018).

    Article  PubMed  CAS  Google Scholar 

  21. Jin, X. et al. Myogenic differentiation of p53- and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD. Mol. Cells 21, 206–212 (2005).

  22. Shabtay, A. et al. The meat quality characteristics of Holstein calves: the story of Israeli ‘dairy beef’. Foods 10, 2308 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Conanec, A. et al. Has breed any effect on beef sensory quality?. Livestock Sci. 250, 104548 (2021).

    Article  Google Scholar 

  24. Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Betts, D. H. et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl Acad. Sci. USA 98, 1077–1082 (2001).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Nacarelli, T. et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bonnay, F. et al. Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis. Cell 182, 1490–1507 e1419 (2020).

    Article  PubMed  CAS  Google Scholar 

  32. Di Felice, V. et al. Senescence-associated HSP60 expression in normal human skin fibroblasts. Anat. Rec. A 284, 446–453 (2005).

  33. Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79, 208–217 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Pasitka, L. et al. Empirical economic analysis shows cost-effective continuous manufacturing of cultivated chicken using animal-free medium. Nat. Food 5, 693–702 (2024).

    Article  PubMed  Google Scholar 

  35. Stout, A. J. et al. Immortalized bovine satellite cells for cultured meat applications. ACS Synth. Biol. 12, 1567–1573 (2023).

    Article  PubMed  CAS  Google Scholar 

  36. Humbird, D. Scale-Up economics for cultured meat: techno-economic analysis and due diligence. Biotechnol. Bioengin. 118, 3239–3250 (2021).

  37. Pohlscheidt, M. et al. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 26, 1552–1565 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Thomassen, Y. E., Rubingh, O., Wijffels, R. H., van der Pol, L. A. & Bakker, W. A. M. Improved poliovirus d-antigen yields by application of different Vero cell cultivation methods. Vaccine 32, 2782–2788 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  PubMed  CAS  Google Scholar 

  40. Zhao, C. et al. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells. BMC Cell Biol. 11, 82 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vernier, M. & Giguère, V. Aging, senescence and mitochondria: the PGC-1/ERR axis. J. Mol. Endocrinol. 66, R1–r14 (2021).

    Article  PubMed  CAS  Google Scholar 

  44. Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–r185 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Olmos, Y. et al. Mutual dependence of Foxo3a and PGC-1α in the induction of oxidative stress genes. J. Biol. Chem. 284, 14476–14484 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qian, L. et al. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 9, 50 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Negulescu, P. G. et al. Techno-economic modeling and assessment of cultivated meat: impact of production bioreactor scale. Biotechnol. Bioeng. 120, 1055–1067 (2023).

  49. Zhao, Z. et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis. 24, 233–243 (2021).

    Article  PubMed  CAS  Google Scholar 

  50. Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473–7485 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020).

    Article  Google Scholar 

  52. Tuomisto, H. L. & Teixeira de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Sinke, P., Swartz, E., Sanctorum, H., van der Giesen, C. & Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 28, 234–254 (2023).

    Article  Google Scholar 

  54. Humbird, D. Scale-up economics for cultured meat. Biotechnol. Bioeng. 118, 3239–3250 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143, 8–17 (2018).

  57. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Patel, H. et al. nf-core/rnaseq: nf-core/rnaseq v.3.14.0—Hassium Honey Badger. Zenodo https://zenodo.org/records/10471647 (2024).

  59. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  60. Shamimuzzaman, M. et al. Bovine Genome Database: new annotation tools for a new reference genome. Nucleic Acids Res. 48, D676–D681 (2020).

    PubMed  CAS  Google Scholar 

  61. Raz, R., Roth, Z. & Gershoni, M. ExAgBov: a public database of annotated variations from hundreds of bovine whole-exome sequencing samples. Sci Data 9, 469 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Garcia, M. et al. Sarek: a portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Res 9, 63 (2020).

  63. Hanssen, F. et al. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genom. Bioinform. https://doi.org/10.1093/nargab/lqae031 (2024).

  64. Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34, 57–65 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Rogers, M. F., Shihab, H. A., Gaunt, T. R. & Campbell, C. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Sci. Rep. 7, 11597 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Caswell, T. A. et al. matplotlib/matplotlib: REL: v.3.7.5. Zenodo https://zenodo.org/records/10669804 (2024).

Download references

Acknowledgements

We thank the Sam and Rina Frankel Foundation (donation; Y.N.) and Believer Meats (Y.N.) for funding this work. The authors also thank Y. Tzfati for his advice, K. Asulin, C. Zisman, L. Shirony, L. Ravid Lustig and Y. Friedmann for technical support, and Believer Meats for contributing its cell lines to this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and funding by Y.N. Investigation by L.P., M.C., S.R., A.E., B.G., A.G. Methodology by Y.N., L.P., M.C., S.R., A.E., B.G., A.G. Software by S.R. and A.E. Writing by Y.N., L.P. and M.C.

Corresponding author

Correspondence to Yaakov Nahmias.

Ethics declarations

Competing interests

Y.N. is a director and shareholder in Believer Meats. B.G. and A.G. are employees of Believer Meats. The other authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Primer sequences for species validation by PCR
Extended Data Table 2 Antibodies used for immunofluorescent staining

Extended Data Fig. 1 Long-term bovine dermal fibroblast propagation in vitro.

(a) Expression of fibroblast markers in primary bovine fibroblasts and bovine liver tissue (n=3). Data are presented as means plus s.e.m. (b) Doubling time of primary cells ranged between 30 and 8,200 h. Cultures entered senescence around 200 d post isolation. (c) Accumulative population doublings (PD) of primary cells. Senescence was reached at PD 40 to 60 following over 40 passages in culture.

Source data

Extended Data Fig. 2 Characterization of senescent bovine fibroblasts.

(a) Top 24 terms appearing in the enrichment analysis of overlapping differentially expressed genes between PBF-15 and Sn-BF-15, and PBF-13 and Sn-BF-13, respectively (n=3). (b) Senescent fibroblasts exhibit a fragmented nucleus as seen in transmission electron microscopy (TEM) images (arrowheads). Scale bar 10 µm. (c) TEM images showing cytoplasmic organelles and structures in primary and senescent fibroblasts. Mitochondria (M), rough- and smooth- ER (RER and SER) respectively, membrane whorls (MW), autophagosome (AP). Scale bar 2 µm.

Extended Data Fig. 3 Characterization of spontaneously immortalized bovine fibroblasts.

(a) Doubling time of bovine fibroblasts in extended in vitro cultures. Spontaneously immortalized lines are referred to as HUN-BF-15 and HUN-BF-13 derived from Holstein and Simmental cows, respectively. (b) Phase images of primary fibroblasts and emerging fibroblast colonies. Black arrows indicate senescent cells, red arrow indicates edge of emerging colony of immortalized fibroblasts. Scale bar 200 µm. (c) Accumulative population doublings of immortalized lines HUN-BF-15 and HUN-BF-13 as a function of passage number. (d) Top 24 terms appearing in the enrichment analysis of overlapping differentially expressed genes between Sn-BF-15 and HUN-BF-15, and Sn-BF-13 and HUN-BF-13, respectively (n=3).

Source data

Extended Data Fig. 4 DNA repair capability of immortalized bovine fibroblasts.

(a) Comet assay showing functional DNA damage repair in primary and immortalized fibroblasts PBF-13 and HUN-BF-13. Scale bar 500 µm.

Extended Data Fig. 5 Mitochondrial structure and function of primary, senescent and immortalized fibroblasts.

(a) Transmission electron microscopy (TEM) imaging showing changes in mitochondrial structure in primary, senescent and immortalized fibroblasts from a Holstein cow. Arrowheads indicate damaged mitochondria. Scale bar 1 µm.

Extended Data Fig. 6 Anchorage-independent growth of immortalized bovine fibroblasts in single-cell suspension.

(a) Schematic depiction of adaptation and selection of clones for single-cell suspensions. (b) Doubling times tracked during immortalized bovine fibroblast adaptation to anchorage-independent growth. (c) Phase image of bovine fibroblast single cell suspension. Scale bar 50 µm. Part a created with BioRender.com.

Source data

Extended Data Fig. 7 Cell culture validation.

(a) Mycoplasma test of primary, senescent and immortalized bovine fibroblasts. (b) Species confirming test of primary, senescent and immortalized bovine fibroblasts.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–12.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Figs. 1, 3 and 6

Statistical source data for Extended Data Figs. 1, 3 and 6.

Source Data Extended Data Fig. 7

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasitka, L., Cohen, M., Regenbaum, S. et al. Spontaneous immortalization of bovine fibroblasts following long-term expansion offers a non-transformed cell source for cultivated beef. Nat Food 6, 1079–1094 (2025). https://doi.org/10.1038/s43016-025-01255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01255-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research