Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1630 results
Advanced filters: Author: Robert K. Yu Clear advanced filters
  • Early identification of high-risk trauma patients in prehospital settings is essential for effective triage and improved survival. Here the authors show that a real-time ensemble AI model accurately predicts emergency department mortality using only prehospital data, outperforming traditional triage tools.

    • Na-eun Oh
    • Thomas Young-Chul Oh
    • Jinseok Lee
    ResearchOpen Access
    Nature Communications
    P: 1-12
  • Transcription factor osr2 is identified as a specific marker and regulator of mural lymphatic endothelial cell (muLEC) differentiation and maintenance, and muLECs and border-associated macrophages share functional analogies but are not homologous, providing an example of convergent evolution.

    • Andrea U. Gaudi
    • Michelle Meier
    • Benjamin M. Hogan
    ResearchOpen Access
    Nature
    P: 1-9
  • Researchers studied the blood-based metabolome of over 23,000 people from ten ethnically diverse cohorts. They identified 235 metabolites associated with future risk of type 2 diabetes (T2D). By integrating genetic and modifiable lifestyle factors, their findings provide insights into T2D mechanisms and could improve risk prediction and inform precision prevention.

    • Jun Li
    • Jie Hu
    • Qibin Qi
    ResearchOpen Access
    Nature Medicine
    P: 1-11
  • Affinity-proteomics platforms often yield poorly correlated measurements. Here, the authors show that protein-altering variants drive a portion of inter-platform inconsistency and that accounting for genetic variants can improve concordance of protein measures and phenotypic associations across ancestries.

    • Jayna C. Nicholas
    • Daniel H. Katz
    • Laura M. Raffield
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-21
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • HIV remission of more than 6 years was achieved in a patient with functional viral co-receptors after CCR5 wild-type/Δ32 allogeneic stem cell transplantation, providing evidence of other mechanisms that can be harnessed to attain long-term remission.

    • Christian Gaebler
    • Samad Kor
    • Olaf Penack
    ResearchOpen Access
    Nature
    P: 1-9
  • The CMS Collaboration reports the measurement of the spin, parity, and charge conjugation properties of all-charm tetraquarks, exotic fleeting particles formed in proton–proton collisions at the Large Hadron Collider.

    • A. Hayrapetyan
    • V. Makarenko
    • A. Snigirev
    ResearchOpen Access
    Nature
    Volume: 648, P: 58-63
  • As Nature Aging celebrates its fifth anniversary, the journal asks some of the researchers who contributed to the journal early on to reflect on the past and the future of aging and age-related disease research, the impact of the field on human health now and in the future, and what challenges need to be addressed to ensure sustained progress.

    • Fabrisia Ambrosio
    • Maxim N. Artyomov
    • Sebastien Thuault
    Comments & Opinion
    Nature Aging
    Volume: 6, P: 6-22
  • Improved vaccines and antivirals are needed for many enveloped viruses. Here, the authors identify sulfur-based small molecules that disrupt viral membrane properties, inhibiting fusion and entry, and safely inactivate influenza virus. The resulting inactivated influenza vaccine is protective in mice.

    • David W. Buchholz
    • Armando Pacheco
    • Hector C. Aguilar
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • A groundbreaking study reveals how physical confinement triggers ferroptosis. It finds the nucleus acts as a mechanosensor, orchestrating Drp1 and cPLA2 that leads to mitochondrial dysfunction and ultimately, cell death.

    • Fang Zhou
    • Robert J. Ju
    • Congying Wu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Somatic mutations in blood cells (CHIP) are linked to diseases like heart disease, but the mechanisms are unclear. Here, the authors show that different CHIP driver genes alter unique sets of plasma proteins, some of which are validated in mouse models.

    • Zhi Yu
    • Amélie Vromman
    • Pradeep Natarajan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Wastewater-based surveillance tends to focus on specific pathogens. Here, the authors mapped the wastewater virome from 62 cities worldwide to identify over 2,500 viruses, revealing city-specific virome fingerprints and showing that wastewater metagenomics enables early detection of emerging viruses.

    • Nathalie Worp
    • David F. Nieuwenhuijse
    • Miranda de Graaf
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • The 4D Nucleome Project demonstrates the use of genomic assays and computational methods to measure genome folding and then predict genomic structure from DNA sequence, facilitating the discovery of potential effects of genetic variants, including variants associated with disease, on genome structure and function.

    • Job Dekker
    • Betul Akgol Oksuz
    • Feng Yue
    ResearchOpen Access
    Nature
    Volume: 649, P: 759-776
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Giles et al. developed a method for noninvasive absorbance measurement of mitochondrial hemes to monitor the mitochondrial membrane potential in the perfused heart. They then applied this approach to show how the mitochondrial membrane potential changed during cardiac ischemia.

    • Abigail V. Giles
    • Raul Covian
    • Robert S. Balaban
    ResearchOpen Access
    Nature Cardiovascular Research
    Volume: 4, P: 1627-1641
  • Trends in global H2 sources and sinks are analysed from 1990 to 2020, and a comprehensive budget for the decade 2010–2020 is presented.

    • Zutao Ouyang
    • Robert B. Jackson
    • Andy Wiltshire
    ResearchOpen Access
    Nature
    Volume: 648, P: 616-624
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The combination of computational design, laboratory-based screening and biophysical validation enables the de novo generation of variable heavy-chain antibody fragments and antibodies that precisely target chosen disease-related molecules.

    • Nathaniel R. Bennett
    • Joseph L. Watson
    • David Baker
    ResearchOpen Access
    Nature
    Volume: 649, P: 183-193
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The authors find low-energy magnetic excitations and a flat band near the Fermi level in kagome metal superconductor CsCr3Sb5 by angle-resolved photoemission and resonant inelastic X-ray scattering. They suggest that the flat band plays a role in the emergence of charge/magnetic order at low temperatures.

    • Zehao Wang
    • Yucheng Guo
    • Pengcheng Dai
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Fluidic force microscopy combines atomic force microscopy with microfluidic probes to enable measurement and manipulation of materials at sub-micrometre resolution. In this Primer, Zambelli et al. discuss the principles of fluidic force microscopy and applications in biological research and nanotechnology.

    • Tomaso Zambelli
    • Orane Guillaume-Gentil
    • Julia A. Vorholt
    Reviews
    Nature Reviews Methods Primers
    Volume: 6, P: 1-21
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The equivalency of stress and temperature as driving force for the relaxation in metallic glasses is widely accepted. Here, Yu et al.examine this assumption in simulations and find that stress induces a fragile-to-strong transition in addition to accelerated relaxation dynamics as temperature does.

    • Hai-Bin Yu
    • Ranko Richert
    • Konrad Samwer
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-6
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19