Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 439 results
Advanced filters: Author: Sean H. Kim Clear advanced filters
  • Biocatalysis of the chemotherapy drug, doxorubicin, relies on the cytochrome P450 DoxA, which is inefficient. Here, the authors ameliorated the biosynthetic limitations by identifying DoxA redox partners and DnrV, which prevents product inhibition, helping improve microbial production.

    • Arina Koroleva
    • Erika Artukka
    • Mikko Metsä-Ketelä
    ResearchOpen Access
    Nature Communications
    P: 1-13
  • Urinary kidney injury-1 (Kim-1) outperforms serum creatinine, blood urea nitrogen and urinary N-acetyl-β-D-glucosaminidase in detecting kidney damage induced in rats by a range of nephrotoxicants. Earlier detection of renal injury, enabled by monitoring levels of urinary Kim-1, should enable elimination of nephrotoxic candidates sooner in the drug development pipeline.

    • Vishal S Vaidya
    • Josef S Ozer
    • Joseph V Bonventre
    Research
    Nature Biotechnology
    Volume: 28, P: 478-485
  • Global river runoff projections constrained by observations indicate stronger declines in runoff under climate change than raw model outputs, according to a study combining multiple observational datasets, two generations of climate models, and large ensemble sampling of internal variability.

    • Hanjun Kim
    • Flavio Lehner
    • Andrew W. Wood
    ResearchOpen Access
    Communications Earth & Environment
    P: 1-12
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Rjoob et al. develop CardioKG, a knowledge graph built on cardiac imaging traits to identify genetic associations and potential therapeutic strategies and drug repurposing opportunities for cardiovascular diseases.

    • Khaled Rjoob
    • Kathryn A. McGurk
    • Declan P. O’Regan
    ResearchOpen Access
    Nature Cardiovascular Research
    Volume: 5, P: 18-33
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Hodgkin Reed Sternberg (HRS) cells and their surrounding microenvironment in Hodgkin lymphoma remain poorly characterized. Here, the authors perform genome-wide transcriptional profiling with spatial and single-cell resolution to explore the cellular and molecular composition of the Hodgkin lymphoma microenvironment and used machine learning to identify IL13 as a potential HRS cell survival factor.

    • Vignesh Shanmugam
    • Neriman Tokcan
    • Todd R. Golub
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Here, the authors examine the mechanisms behind cheatgrass’s successful invasion of North American ecosystems. Their genetic analyses and common garden experiments demonstrate that multiple introductions and migrations facilitated cheatgrass local adaptation.

    • Diana Gamba
    • Megan L. Vahsen
    • Jesse R. Lasky
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • In vivo experiments and clinical cohort analyses show that hypoxia-inducible factor 2 (HIF2)-induced parathyroid hormone-related protein (PTHrP) expression contributes to cachexia in the context of renal cell carcinoma (RCC). The pathway can be targeted by HIF2 inhibitors, including belzutifan, which may reduce cachexia in patients with RCC.

    • Muhannad Abu-Remaileh
    • Laura A. Stransky
    • William G. Kaelin Jr
    ResearchOpen Access
    Nature Medicine
    Volume: 32, P: 245-257
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Proximal nephron in pluripotent stem cell derived kidney organoids are immature with limited support for functional solute channels. Vanslambrouck et al report improved metanephric specification, generating enhanced kidney organoids with superior proximal tubules, spatially arranged nephrons, and applications for disease research, and drug screening.

    • Jessica M. Vanslambrouck
    • Sean B. Wilson
    • Melissa H. Little
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-23
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A panel of urinary biomarkers enables the progression of renal injury and subsequent repair and recovery to be monitored after exposure of rats to either carbapenem A or gentamicin. The authors complement this study by demonstrating that serum cystatin C is more sensitive and specific than serum creatinine and blood urea nitrogen in monitoring generalized renal function after exposure to nephrotoxicants.

    • Josef S Ozer
    • Frank Dieterle
    • David L Gerhold
    Research
    Nature Biotechnology
    Volume: 28, P: 486-494
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Insights into the mechanism of methylthio-alkane reductase (MAR)—a nitrogenase-like enzyme essential for growth under sulfate-limited conditions—have remained scarce. Now a cryo-EM structure of MAR from Rhodospirillum rubrum, along with spectroscopic investigations, reveals how it uses complex metallocofactors for catalysis.

    • Srividya Murali
    • Guo-Bin Hu
    • Justin A. North
    ResearchOpen Access
    Nature Catalysis
    Volume: 8, P: 1072-1085
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Here, the authors sample air and surfaces in hospital rooms of COVID-19 patients, detect SARS-CoV-2 RNA in air samples of two of three tested airborne infection isolation rooms, and find surface contamination in 66.7% of tested rooms during the first week of illness and 20% beyond the first week of illness.

    • Po Ying Chia
    • Kristen Kelli Coleman
    • Daniela Moses
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Genomic sequencing of the thermotolerant coral species Oculina patagonica, single-cell transcriptomic analyses of symbiotic and non-symbiotic specimens and comparisons with obligate symbiotic coral species reveal adaptations that provide resilience to coral bleaching.

    • Shani Levy
    • Xavier Grau-Bové
    • Arnau Sebé-Pedrós
    Research
    Nature
    Volume: 648, P: 368-376
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14