Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 576 results
Advanced filters: Author: Timothy R. Chan Clear advanced filters
  • Response to immune therapy varies among cancer types and individual cancer patients; thus, predictive biomarkers of success are urgently needed. Here, the authors present a computational framework that integrates tumor clonality and neoantigen characterization data to predict patient outcomes upon immune checkpoint inhibitor treatment.

    • Ko-Han Lee
    • Timothy J. Sears
    • Hannah Carter
    ResearchOpen Access
    Nature Communications
    P: 1-18
  • Single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing profiling of human retinal samples from diverse ancestries create an epitranscriptomic atlas characterizing over 130 cell types. Integration with genome-wide association study and expression quantitative trait loci data provides further insights into gene regulation and disease etiology.

    • Jin Li
    • Jun Wang
    • Rui Chen
    Research
    Nature Genetics
    P: 1-16
  • In an arm of an ongoing multicenter phase 2 trial testing different therapies in patients with genetically profiled grade 2 or 3 meningiomas, treatment with an oral CDK4/6 inhibitor met the primary endpoint for progression-free survival at 6 months in patients with CDK or NF2 alterations.

    • Priscilla K. Brastianos
    • Katharine Dooley
    • Evanthia Galanis
    ResearchOpen Access
    Nature Medicine
    P: 1-8
  • The Taiwan Precision Medicine Initiative recruited and genotyped more than half a million Taiwanese participants, almost all of Han Chinese ancestry, and performed comprehensive genomic analyses and developed polygenic risk score prediction models for numerous health conditions.

    • Hung-Hsin Chen
    • Chien-Hsiun Chen
    • Cathy S. J. Fann
    ResearchOpen Access
    Nature
    Volume: 648, P: 128-137
  • This study demonstrates the capability of deep learning protein design models in generating functionally validated β-strand pairing interfaces, expanding the structural diversity of de novo binding proteins and accessible target surfaces.

    • Isaac Sappington
    • Martin Toul
    • David Baker
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-15
  • The existing ENCODE registry of candidate human and mouse cis-regulatory elements is expanded with the addition of new ENCODE data, integrating new functional data as well as new cell and tissue types.

    • Jill E. Moore
    • Henry E. Pratt
    • Zhiping Weng
    ResearchOpen Access
    Nature
    P: 1-10
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
    • Timothy Jickells
    • Anthony Knap
    • John Miller
    Research
    Nature
    Volume: 297, P: 55-57
  • Melanoma cells lacking SOX10 are tolerant to MAPK inhibition (MAPKi) due to elevated TAZ-driven TEAD signaling. Here, the authors develop two inhibitors of TEAD, capable of resensitising SOX10 knockout melanoma cells to MAPKi and offering a strategy to overcome drug tolerance and improve treatment response.

    • Connor A. Ott
    • Timothy J. Purwin
    • Andrew E. Aplin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Timothy Frayling, Joel Hirschhorn, Peter Visscher and colleagues report a meta-analysis of genome-wide association studies for adult height in 253,288 individuals. They identify 697 variants in 423 loci significantly associated with adult height and find that these variants cluster in pathways involved in growth and together explain one-fifth of the heritability for this trait.

    • Andrew R Wood
    • Tonu Esko
    • Timothy M Frayling
    Research
    Nature Genetics
    Volume: 46, P: 1173-1186
  • Determinants of WEE1 inhibitor sensitivity in cancer cells are largely undefined. Here, the authors show that WEE1 inhibitors beyond their cell cycle perturbing effects also lead to paradoxical activation of the integrated stress response kinase GCN2.

    • Rinskje B. Tjeerdsma
    • Timothy F. Ng
    • Marcel A.T.M. van Vugt
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The combination of computational design, laboratory-based screening and biophysical validation enables the de novo generation of variable heavy-chain antibody fragments and antibodies that precisely target chosen disease-related molecules.

    • Nathaniel R. Bennett
    • Joseph L. Watson
    • David Baker
    ResearchOpen Access
    Nature
    Volume: 649, P: 183-193
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Clear cell renal cell carcinoma (ccRCC) bears the hallmark loss of VHL but remains incurable. Here, the authors identify the SLC1A1 dicarboxylic amino acid transporter as an actionable, oncogenic, HIF-independent, metabolic dependency in VHL-deficient ccRCCs.

    • Treg Grubb
    • Pooneh Koochaki
    • Abhishek A. Chakraborty
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Mantle cell lymphoma (MCL) is a form of B-cell non-Hodgkin lymphoma with a high degree of genetic and clinical heterogeneity. Here, using a multi-omics approach, the authors investigate genetic alterations in association with the tumour microenvironment to identify potential therapeutic vulnerabilities.

    • Sunandini Sharma
    • Roshia Ali
    • Javeed Iqbal
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • Cell type labelling in single-cell datasets remains a major bottleneck. Here, the authors present AnnDictionary, an open-source toolkit that enables atlas-scale analysis and provides the first benchmark of LLMs for de novo cell type annotation from marker genes, showing high accuracy at low cost.

    • George Crowley
    • Robert C. Jones
    • Stephen R. Quake
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Why animals prefer novel social encounters over familiar ones is unclear. Here, authors find that mesolimbic dopamine encodes novel social interaction bout length; whereas familiar social encounters are shortened by an IPN→LDTg circuit that restricts dopamine to control novelty preference.

    • Susanna Molas
    • Timothy G. Freels
    • Andrew R. Tapper
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • This study demonstrates that high alcohol concentrations during binge drinking activate a small GABAergic neuronal ensemble in the medial orbitofrontal cortex, which subsequently reduces further alcohol consumption. This effect is mediated by the ensemble’s projections to the mediodorsal thalamus.

    • Pablo Gimenez-Gomez
    • Timmy Le
    • Gilles E. Martin
    Research
    Nature Neuroscience
    Volume: 28, P: 1741-1752
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • A multi-ancestry genome-wide association study meta-analysis, combined with transcriptome- and methylome-wide association analyses, identifies risk loci associated with colorectal cancer. Credible effector genes and their target tissues are also highlighted, showing that over a third probably act outside the colonic mucosa.

    • Ceres Fernandez-Rozadilla
    • Maria Timofeeva
    • Ulrike Peters
    Research
    Nature Genetics
    Volume: 55, P: 89-99
    • Randall Mitchell
    • David Bleakly
    • Nickolas Waser
    Research
    Nature
    Volume: 364, P: 20
  • In a prospective study enrolling 1,222 patients from 22 emergency departments, a device using a machine-learning-based signature of blood mRNAs demonstrated clinically acceptable performance to diagnose bacterial and viral infections and to predict the all-cause need for critical care interventions within 7 days, with benchmark to established biomarkers and risk scores.

    • Oliver Liesenfeld
    • Sanjay Arora
    • Nathan I. Shapiro
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 4044-4054