Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor

Abstract

The cellular and molecular mediators of peri-implant fibrosis—a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint—remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LEPR-expressing cells are present abundantly in both human and murine peri-implant fibrous tissue.
Fig. 2: Ablation of LEPR+ cells resulted in significant reduction of peri-implant fibrosis.
Fig. 3: Fibrous-integration surgery does not affect osteogenicity of LinLepR-tdTomato6C3CD90CD105CD200+.
Fig. 4: Engrafted LinLEPR-tdTomato+ cells from a fibrous-integrated donor are more inclined to form fibrous tissue than LinLEPR-tdTomato+ cells from a osseointegrated donor.
Fig. 5: ADGRF5 is expressed in abundance by LEPR+ cells in both human and murine peri-implant fibrotic tissue.
Fig. 6: Ablation of Adgrf5 in LEPR+ cells inhibits peri-implant fibrosis and enhances peri-implant bone formation in vivo.
Fig. 7: Ablation of Adgrf5 in LEPR+ resulted in decreased LEPR+ cell proliferation and increased osteogenic differentiation capability.
Fig. 8: Administration of neutralizing antibody against ADGRF5 can both prevent and reverse peri-implant fibrosis.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed data generated during the study are available for research purposes from the corresponding author within reasonable request. Transcriptomic data from bulk RNA-seq are available from the Gene Expression Omnibus (GEO) under accession numbers GSE227869 and GSE227128. The genomic data used in Fig. 5n and Supplementary Fig. 7 were extracted from publicly available datasets: GSE108892 (ref. 24), GSE138689 (ref. 23) and GSE136970 (ref. 39). The genomic data used in Supplementary Fig. 6 were extracted from the publicly available dataset GSE147287 (ref. 46). Source data for the figures are provided with this paper.

References

  1. Headon, H., Kasem, A. & Mokbel, K. Capsular contracture after breast augmentation: an update for clinical practice. Arch. Plast. Surg. 42, 532–543 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah, P. K. Inflammation, neointimal hyperplasia, and restenosis: as the leukocytes roll, the arteries thicken. Circulation 107, 2175–2177 (2003).

    Article  PubMed  Google Scholar 

  3. Apostu, D., Lucaciu, O., Berce, C., Lucaciu, D. & Cosma, D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J. Int. Med. Res. 46, 2104–2119 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, T. et al. Institutional experience of in-stent stenosis after pipeline flow diverter implantation: a retrospective analysis of 6 isolated cases out of 118 patients. Medicine 100, e25149 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng, X., Gu, J. & Zhou, Y. Primary total hip arthroplasty failure: aseptic loosening remains the most common cause of revision. Am. J. Transl. Res. 14, 7080–7089 (2022).

    PubMed  PubMed Central  Google Scholar 

  6. Sabah, S. A. et al. No exponential rise in revision knee replacement surgery over the past 15 years: an analysis from the National Joint Registry. Osteoarthr. Cartil. 30, 1670–1679 (2022).

    Article  CAS  Google Scholar 

  7. Negm, A. M., Beaupre, L. A., Goplen, C. M., Weeks, C. & Jones, C. A. A scoping review of total hip arthroplasty survival and reoperation rates in patients of 55 years or younger: health services implications for revision surgeries. Arthroplast Today 16, 247–258.e246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brown, M. L., Javidan, P., Early, S. & Bugbee, W. Evolving etiologies and rates of revision total knee arthroplasty: a 10-year institutional report. Arthroplasty 4, 39 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tay, M. L., Matthews, B. G., Monk, A. P. & Young, S. W. Disease progression, aseptic loosening and bearing dislocations are the main revision indications after lateral unicompartmental knee arthroplasty: a systematic review. J. ISAKOS 7, 132–141 (2022).

    Article  PubMed  Google Scholar 

  10. Teeny, S. M., York, S. C., Mesko, J. W. & Rea, R. E. Long-term follow-up care recommendations after total hip and knee arthroplasty: results of the American Association of Hip and Knee Surgeons’ member survey. J. Arthroplast. 18, 954–962 (2003).

    Article  Google Scholar 

  11. Upfill-Brown, A. et al. Epidemiology of revision total knee arthroplasty in the United States, 2012 to 2019. Arthroplast Today 15, 188–195.e186 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wooley, P. H. & Schwarz, E. M. Aseptic loosening. Gene Ther. 11, 402–407 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Drees, P., Eckardt, A., Gay, R. E., Gay, S. & Huber, L. C. Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nat. Clin. Pr. Rheumatol. 3, 165–171 (2007).

    Article  CAS  Google Scholar 

  14. Neale, S. D., Sabokbar, A., Howie, D. W., Murray, D. W. & Athanasou, N. A. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J. Orthop. Res. 17, 686–694 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ingham, E. & Fisher, J. The role of macrophages in osteolysis of total joint replacement. Biomaterials 26, 1271–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Arora, A. et al. The role of the TH1 and TH2 immune responses in loosening and osteolysis of cemented total hip replacements. J. Biomed. Mater. Res. A 64, 693–697 (2003).

    Article  PubMed  Google Scholar 

  17. Yang, S. Y. et al. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther. 11, 483–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Apinyankul, R. et al. Isolated versus full component revision in total knee arthroplasty for aseptic loosening. J. Arthroplasty 38, 335–340 (2022).

    Article  PubMed  Google Scholar 

  19. Yao, J. J. et al. Long-term mortality after revision THA. Clin. Orthop. Relat. Res. 476, 420–426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Omatsu, Y., Seike, M., Sugiyama, T., Kume, T. & Nagasawa, T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508, 536–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Seike, M., Omatsu, Y., Watanabe, H., Kondoh, G. & Nagasawa, T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 32, 359–372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mo, C. et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J. 41, e108415 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong, L. et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife 9, e54695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishibashi, M. et al. CD200-positive cancer associated fibroblasts augment the sensitivity of epidermal growth factor receptor mutation-positive lung adenocarcinomas to EGFR tyrosine kinase inhibitors. Sci. Rep. 7, 46662 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ortinau, L. C. et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells. Cell Stem Cell 25, 784–796.e785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vesprey, A. et al. Tmem100- and Acta2-lineage cells contribute to implant osseointegration in a mouse model. J. Bone Miner. Res. 36, 1000–1011 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, B., Yue, R., Murphy, M., Peyer, J. & Morrison, S. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 165–168 (2014).

    Article  Google Scholar 

  32. Shu, H. S. et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 28, 2122–2136.e2123 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Fredriksson, R., Gloriam, D. E., Höglund, P. J., Lagerström, M. C. & Schiöth, H. B. There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem. Biophys. Res. Commun. 301, 725–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kubo, F. et al. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir. Res. 20, 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Folts, C. J., Giera, S., Li, T. & Piao, X. Adhesion G-protein-coupled receptors as drug targets for neurological diseases. Trends Pharmacol. Sci. 40, 278–293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Purcell, R. H. & Hall, R. A. Adhesion G-protein-coupled receptors as drug targets. Annu. Rev. Pharmacol. Toxicol. 58, 429–449 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, X. et al. Intermittent parathyroid hormone enhances cancellous osseointegration of a novel murine tibial implant. J. Bone Joint Surg. Am. 97, 1074–1083 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuyl, E.-V. et al. Inhibition of PAD4 mediated neutrophil extracellular traps prevents fibrotic osseointegration failure in a tibial implant murine model: an animal study. Bone Joint J. 103-B, 135–144 (2021).

    Article  PubMed  Google Scholar 

  39. Matsushita, Y. et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun. 11, 332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Decker, M. et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat. Cell Biol. 19, 677–688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, X. et al. GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway. Cancer Res. 73, 6206–6218 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, T. et al. GPR116 overexpression correlates with poor prognosis in gastric cancer. Medicine 100, e28059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgiadi, A. et al. Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nat. Commun. 12, 2999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Z. et al. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. Int. J. Biol. Sci. 17, 4192–4206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu, X. et al. Single-cell RNA sequencing of human femoral head in vivo. Aging 13, 15595–15619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao, B. et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Invest. 129, 2578–2594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu, Z. et al. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol. 14, 1136561 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, J. et al. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng. Part A 17, 1767–1776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dillon, S. et al. Ablation of Enpp6 results in transient bone hypomineralization. JBMR Plus 5, e10439 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Granados-Montiel, J. et al. SERPINA9 and SERPINB2: novel cartilage lineage differentiation markers of human mesenchymal stem cells with kartogenin. Cartilage 12, 102–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, J. et al. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice. Biochem. Biophys. Res. Commun. 431, 19–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiang, L., Zheng, J., Zhang, M., Ai, T. & Cai, B. FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2. Stem Cell Res. Ther. 11, 403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, X. et al. DUSP5 promotes osteogenic differentiation through SCP1/2-dependent phosphorylation of SMAD1. Stem Cells 39, 1395–1409 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Yuan, B. et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 118, 722–734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maranda, V., Gaumond, M. H. & Moffatt, P. The osteogenesis imperfecta type V mutant BRIL/IFITM5 promotes transcriptional activation of MEF2, NFATc, and NR4A in osteoblasts. Int. J. Mol. Sci. 23, 2148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alshbool, F. Z. & Mohan, S. Differential expression of claudin family members during osteoblast and osteoclast differentiation: Cldn-1 is a novel positive regulator of osteoblastogenesis. PLoS ONE 9, e114357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shi, C. et al. Carbonic anhydrase III protects osteocytes from oxidative stress. FASEB J. 32, 440–452 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, M. et al. Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. J. Clin. Invest. 118, 2076–2087 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miyamoto, S., Yoshikawa, H. & Nakata, K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep. 15, 101088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ha, H. et al. Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J. Immunol. 180, 1382–1389 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Xue, Y., Zhao, C. & Liu, T. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) accelerates osteoclast formation by regulating signal transducer and activator of transcription 3 (STAT3) signalling. Bioengineered 13, 2285–2295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Madel, M. B. et al. Specific targeting of inflammatory osteoclastogenesis by the probiotic yeast S. boulardii CNCM I-745 reduces bone loss in osteoporosis. eLife 12, e82037 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng, C. et al. TNFRSF19 inhibits TGFβ signaling through interaction with TGFβ receptor type I to promote tumorigenesis. Cancer Res. 78, 3469–3483 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura, S. et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nat. Commun. 10, 847 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yi, X. et al. TNF-polarized macrophages produce insulin-like 6 peptide to stimulate bone formation in rheumatoid arthritis in mice. J. Bone Miner. Res. 36, 2426–2439 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, Y. et al. TGF-β1 and TIMP-4 regulate atrial fibrosis in atrial fibrillation secondary to rheumatic heart disease. Mol. Cell. Biochem. 406, 131–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Ni, C. et al. FMO2 (flavin containing monooxygenase 2) prevents cardiac fibrosis via CYP2J3-SMURF2 axis. Circ. Res. 131, 189–206 (2022).

    Article  CAS  Google Scholar 

  70. Pang, X. et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct. Target Ther. 8, 1 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toriumi, K. et al. LRRC15 expression indicates high level of stemness regulated by TWIST1 in mesenchymal stem cells. iScience 26, 106946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, G., Wu, H., Liang, P., He, X. & Liu, D. Fus knockdown inhibits the profibrogenic effect of cardiac fibroblasts induced by angiotensin II through targeting Pax3 thereby regulating TGF-β1/Smad pathway. Bioengineered 12, 1415–1425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cribb, A. E. et al. Assessment of arylamine N-acetyltransferase (NAT1) activity in mononuclear leukocytes of cystic fibrosis patients. Br. J. Clin. Pharm. 39, 85–89 (1995).

    Article  CAS  Google Scholar 

  74. Di Fazio, P. et al. Toll-like receptor 5 tunes hepatic and pancreatic stellate cells activation. BMJ Open Gastroenterol. 10, e001148 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shirai, K. et al. Serum amyloid P component and pro-platelet basic protein in extracellular vesicles or serum are novel markers of liver fibrosis in chronic hepatitis C patients. PLoS ONE 17, e0271020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nhieu, J., Lin, Y. L. & Wei, L. N. CRABP1 in non-canonical activities of retinoic acid in health and diseases. Nutrients 14, 1528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Königshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119, 772–787 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Minoura, I. et al. Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface. Nat. Commun. 7, 10058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yi, Y. et al. Regulation of atrial fibrosis by the bone. Hypertension 73, 379–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, K. et al. Transforming growth factor-β induced protein regulates pulmonary fibrosis via the G-protein signaling modulator 2/Snail axis. Peptides 155, 170842 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Song, P. et al. Effect of the Wnt1/β-catenin signalling pathway on human embryonic pulmonary fibroblasts. Mol. Med. Rep. 10, 1030–1036 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Collins, C. A. et al. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS ONE 4, e4475 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yan, Y. & Jiang, Y. RACK1 affects glioma cell growth and differentiation through the CNTN2-mediated RTK/Ras/MAPK pathway. Int. J. Mol. Med. 37, 251–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Z., Zhao, M., Yokoyama, K. K. & Li, T. Molecular cloning of a cDNA for rat TM4SF4, a homolog of human il-TMP (TM4SF4), and enhanced expression of the corresponding gene in regenerating rat liver. Biochim. Biophys. Acta 1518, 183–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Tiang, J. M., Butcher, N. J. & Minchin, R. F. Small molecule inhibition of arylamine N-acetyltransferase type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun. 393, 95–100 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Stoupa, A. et al. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol. Med. 10, e9569 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xiao, B. et al. Glutamate ionotropic receptor kainate type subunit 3 (GRIK3) promotes epithelial-mesenchymal transition in breast cancer cells by regulating SPDEF/CDH1 signaling. Mol. Carcinog. 58, 1314–1323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Z., Liu, N., Shi, S., Liu, S. & Lin, H. The role of PIWIL4, an argonaute family protein, in breast cancer. J. Biol. Chem. 291, 10646–10658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, W. & Gu, M. NUDT11 rs5945572 polymorphism and prostate cancer risk: a meta-analysis. Int J. Clin. Exp. Med. 8, 3474–3481 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Chen, G. et al. EphA1 receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma. Oncol. Rep. 23, 563–570 (2010).

    CAS  PubMed  Google Scholar 

  91. Charfi, C., Levros, L. C., Jr. Edouard, E. & Rassart, E. Characterization and identification of PARM-1 as a new potential oncogene. Mol. Cancer 12, 84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pidugu, V. K. et al. IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene 38, 3232–3247 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Bolitho, C., Hahn, M. A., Baxter, R. C. & Marsh, D. J. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr. Relat. Cancer 17, 929–940 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Maruyama, T. et al. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS ONE 8, e56984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niu, G. et al. Overexpression of CPXM2 predicts an unfavorable prognosis and promotes the proliferation and migration of gastric cancer. Oncol. Rep. 42, 1283–1294 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Leblanc, N., Harquail, J., Crapoulet, N., Ouellette, R. J. & Robichaud, G. A. Pax-5 inhibits breast cancer proliferation through MiR-215 up-regulation. Anticancer Res. 38, 5013–5026 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, P. et al. The role of Sprouty1 in the proliferation, differentiation and apoptosis of epidermal keratinocytes. Cell Prolif. 51, e12477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mongan, M. et al. Loss of MAP3K1 enhances proliferation and apoptosis during retinal development. Development 138, 4001–4012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu, J. X. et al. Down-regulation of ALDOB during metabolic reprogramming mediates malignant behavior in hepatocellular carcinoma and insensitivity to postoperative adjuvant transarterial chemoembolization. Clin. Sci. 137, 303–316 (2023).

    Article  CAS  Google Scholar 

  100. Li, X. & Yu, Q. PON1 hypermethylation is associated with progression of renal cell carcinoma. J. Cell. Mol. Med. 23, 6646–6657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, W. et al. A small molecule inhibitor of VSIG-8 prevents its binding to VISTA. Invest. N. Drugs 40, 690–699 (2022).

    Article  Google Scholar 

  102. Wang, B. et al. Carbonic anhydrase IV inhibits cell proliferation in gastric cancer by regulating the cell cycle. Oncol. Lett. 20, 4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Richter, A. M., Walesch, S. K., Wurl, P., Taubert, H. & Dammann, R. H. The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis 1, e18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Merighi, S. et al. A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J. Biol. Chem. 280, 19516–19526 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Li, Y. & Guo, L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front. Endocrinol. 14, 1189007 (2023).

    Article  Google Scholar 

  106. Zhao, X. et al. SPIB acts as a tumor suppressor by activating the NFκB and JNK signaling pathways through MAP4K1 in colorectal cancer cells. Cell Signal. 88, 110148 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Stoeckle, C. et al. RhoH is a negative regulator of eosinophilopoiesis. Cell Death Differ. 23, 1961–1972 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Choi, J. et al. Loss of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing the mRNA decay factor roquin2. Nat. Cell Biol. 20, 586–596 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Luo, N. et al. Prognostic role of M6A-associated immune genes and cluster-related tumor microenvironment analysis: a multi-omics practice in stomach adenocarcinoma. Front. Cell Dev. Biol. 10, 935135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Y., Godavarthi, J. D., Williams-Villalobo, A., Polk, S. & Matin, A. The role of DND1 in cancers. Cancers 13, 3679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Avraham, S. et al. Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J. Biol. Chem. 270, 1833–1842 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, S. et al. PCDH17 increases the sensitivity of colorectal cancer to 5-fluorouracil treatment by inducing apoptosis and autophagic cell death. Signal Transduct. Target Ther. 4, 53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ghafouri-Fard, S. et al. A review on the role of HAND2-AS1 in cancer. Clin. Exp. Med. 23, 3179–3188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ni, R. et al. MiR-216a-3p inhibits the proliferation and invasion of fibroblast-like synoviocytes by targeting dual-specificity phosphatase 5. Int J. Rheum. Dis. 26, 699–709 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Kechele, D. O. et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J. Clin. Invest. 127, 593–607 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yue, Q. et al. Nitric oxide hinders club cell proliferation through Gdpd2 during allergic airway inflammation. FEBS Open Bio. 13, 1041–1055 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, W. et al. Claudin-10 overexpression suppresses human clear cell renal cell carcinoma growth and metastasis by regulating ATP5O and causing mitochondrial dysfunction. Int J. Biol. Sci. 18, 2329–2344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Castro, C. N. et al. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J. Exp. Med. 217, e20192275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Heino, S. et al. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. Sci. Adv. 7, eabj0512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Salazar-Olivo, L. A. et al. SerpinA3g participates in the antiadipogenesis and insulin-resistance induced by tumor necrosis factor-alpha in 3T3-F442A cells. Cytokine 69, 180–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Parikh, A. et al. Malignant cell-specific CXCL14 promotes tumor lymphocyte infiltration in oral cavity squamous cell carcinoma. J. Immunother. Cancer 8, e001048 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Delmonte, O. M. et al. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 138, 1019–1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, J. et al. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1alpha signaling. Cell Death Dis. 12, 672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu, X. et al. Molecular mechanism of MYL4 regulation of skeletal muscle development in pigs. Genes 14, 1267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jiao, S., Li, N., Cai, S., Guo, H. & Wen, Y. Inhibition of CYFIP2 promotes gastric cancer cell proliferation and chemoresistance to 5-fluorouracil through activation of the Akt signaling pathway. Oncol. Lett. 13, 2133–2140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou, J., Jiang, J., Wang, S. & Xia, X. DKK1 inhibits proliferation and migration in human retinal pigment epithelial cells via the Wnt/beta-catenin signaling pathway. Exp. Ther. Med. 12, 859–863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu, F. et al. Comprehensive analyses identify RIPOR2 as a genomic instability-associated immune prognostic biomarker in cervical cancer. Front. Immunol. 13, 930488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Q. et al. Glycoprotein M6A suppresses lung adenocarcinoma progression via inhibition of the PI3K/AKT pathway. J. Oncol. 2022, 4601501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Balinas-Gavira, C. et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia 34, 2722–2735 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Mao, H. et al. HMGCS2 serves as a potential biomarker for inhibition of renal clear cell carcinoma growth. Sci. Rep. 13, 14629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pan, S. et al. Decreased expression of ARHGAP15 promotes the development of colorectal cancer through PTEN/AKT/FOXO1 axis. Cell Death Dis. 9, 673 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chen, X., Lv, Q., Ma, J. & Liu, Y. PLCgamma2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif. 51, e12437 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, Y., Li, S. J., Wu, X., Che, Y. & Li, Q. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J. Biol. Chem. 287, 13877–13888 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vallath, S. et al. CADM1 inhibits squamous cell carcinoma progression by reducing STAT3 activity. Sci. Rep. 6, 24006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takahashi, K. et al. Lysophosphatidic acid (LPA) signaling via LPA4 and LPA6 negatively regulates cell motile activities of colon cancer cells. Biochem. Biophys. Res. Commun. 483, 652–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y., Lim, R. & Nie, G. HtrA4 may play a major role in inhibiting endothelial repair in pregnancy complication preeclampsia. Sci. Rep. 9, 2728 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ma, Y., Han, C. C., Huang, Q., Sun, W. Y. & Wei, W. GRK2 overexpression inhibits IGF1-induced proliferation and migration of human hepatocellular carcinoma cells by downregulating EGR1. Oncol. Rep. 35, 3068–3074 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Han, Y. et al. RASSF4 inhibits cell proliferation and increases drug sensitivity in colorectal cancer through YAP/Bcl-2 pathway. J. Cell. Mol. Med. 26, 3538–3547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dionne, G. et al. Mechanotransduction by PCDH15 relies on a novel cis-dimeric architecture. Neuron 99, 480–492.e485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vikhorev, P. G. et al. Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc. Res. 118, 241–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Barry, A. K., Wang, N. & Leckband, D. E. Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J. Cell Sci. 128, 1341–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stassen, O. M. J. A., Ristori, T. & Sahlgren, C. M. Notch in mechanotransduction—from molecular mechanosensitivity to tissue mechanostasis. J. Cell Sci. 133, jcs250738 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Wilde, C., Mitgau, J., Suchý, T., Schöneberg, T. & Liebscher, I. Translating the force-mechano-sensing GPCRs. Am. J. Physiol. Cell Physiol. 322, C1047–C1060 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Diaz-Horta, O. et al. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J. Mol. Med. 96, 1227–1238 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, Y. C. et al. ATOH1/RFX1/RFX3 transcription factors facilitate the differentiation and characterisation of inner ear hair cell-like cells from patient-specific induced pluripotent stem cells harbouring A8344G mutation of mitochondrial DNA. Cell Death Dis. 9, 437 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lam, M. & Calvo, F. Regulation of mechanotransduction: emerging roles for septins. Cytoskeleton 76, 115–122 (2019).

    Article  PubMed  Google Scholar 

  147. Dela Paz, N. G., Melchior, B. & Frangos, J. A. Shear stress induces G-protein-coupled receptor (GPCR)-independent heterotrimeric G-protein activation in endothelial cells. Am. J. Physiol. Cell Physiol. 312, C428–C437 (2017).

    Article  Google Scholar 

  148. Friess, M. C. et al. Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Rep. 38, 110334 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife 10, e66063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jeffery, E. C., Mann, T. L. A., Pool, J. A., Zhao, Z. & Morrison, S. J. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 29, 1547–1561.e1546 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Di Carlo, S. E. & Peduto, L. The perivascular origin of pathological fibroblasts. J. Clin. Invest. 128, 54–63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. El Agha, E. et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21, 166–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Carlson, S., Trial, J., Soeller, C. & Entman, M. L. Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc. Res. 91, 99–107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Xie, T. et al. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J. Clin. Invest. 126, 3626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. Adhesion G-protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc. Natl Acad. Sci. USA 112, 6194–6199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bridges, J. P. et al. Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism. eLife 11, e69061 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kienzle, A. et al. High rates of aseptic loosening after revision total knee arthroplasty for periprosthetic joint infection. JB JS Open Access 5, e20.00026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. de Steiger, R. N., Lewis, P. L., Harris, I., Lorimer, M. F. & Graves, S. E. What is the outcome of the first revision procedure of primary THA for osteoarthritis? A study from the Australian Orthopaedic Association National Joint Replacement Registry. Clin. Orthop. Relat. Res. 480, 1952–1970 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Li, F., Xu, X., Geng, J., Wan, X. & Dai, H. The autocrine CXCR4/CXCL12 axis contributes to lung fibrosis through modulation of lung fibroblast activity. Exp. Ther. Med. 19, 1844–1854 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Parvizi, J. et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin. Orthop. Relat. Res. 469, 2992–2994 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chan, C. K. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010).

    Article  PubMed  Google Scholar 

  167. Müller, R. & Rüegsegger, P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med. Eng. Phys. 17, 126–133 (1995).

    Article  PubMed  Google Scholar 

  168. Hildebrand, T. & Ruegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997).

    Article  Google Scholar 

  169. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the OREF under awards 994088 and 892405, a Hospital for Special Surgery Surgeon-in-Chief Grant and a Complex Joint Reconstruction Center grant given to V.J.S. X.Y. is supported by grant UL1 TR000457 from the Clinical and Translational Science Center at Weill Cornell Medicine, the Feldstein Medical Foundation and grant W81XWH-21-1-0900 from the Department of Defense. M.B.G. is supported by a Pershing Square Sohn Cancer Research Alliance Award and R01AR075585. The content is solely the responsibility of the authors and does not represent the official views of the sources of research support. We thank E. Monica for the assistance on the article figure editing and formatting. We thank E. Kuyl for the assistance on patient sample procurement. We thank the Flow Cytometry Core, Genomics Resources Core, Optical Microscopy Core and Citigroup Biomedical Imaging Core at Weill Cornell Medicine for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

V.J.S. and A.O. designed, conducted and analysed the majority of experiments. X.Y., V.J.S., A.O. and M.P.G.B. conceived the project. X.Y. and M.P.G.B. supervised the project. X.Y. performed all mouse surgeries. V.J.S. and A.O. performed μCT scans and analysis and RNA-seq data analysis. V.J.S., J.L. and A.O. maintained and genotyped all mice. J.M. supervised or conducted flow cytometry. V.J.S., A.O., Q.L., M.H., Y.N., Q.L., A.T. and J.L. assisted with surgeries and performed tissue collection, immunofluorescence and histology analysis. M.H. and J.L. helped with human sample processing. M.P.G.B. provided access to human samples and supervised human studies. U.M.A., M.B.G. and L.B.I. helped with the study design and data interpretation. V.J.S., A.O., M.H. and X.Y. prepared the article. All authors read and approved the article.

Corresponding author

Correspondence to Xu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 LEPR, ACTA2, and ADGRF5 are expressed by peri-implant fibrotic tissue from multiple patients underwent revision surgery for aseptic loosening.

a,c, Expression of LEPR (red), ACTA2(green), ADGRF5 (cyan) by peri-implant fibrotic tissue from two different patients suffering from peri-implant fibrosis around prior total hip arthroplasty. Far left, overlap between DAPI and LEPR. Second from left, overlap between ACTA2 and DAPI. Third from left, overlap between ADGRF5 and DAPI. Third from right, overlap between LEPR and ACTA2. Second from right, overlap between LEPR and ADGRF5. Far right, overlap between LEPR, ACTA2, and ADGRF5. Scale bar, 250 μm. b,d, Expression of LEPR (red), ACTA2 (green), ADGRF5 (cyan) by peri-implant fibrotic tissue from two different patients suffering from peri-implant fibrosis around prior total knee arthroplasty. Far left, overlap between DAPI and LEPR. Second from left, overlap between ACTA2 and DAPI. Third from left, overlap between ADGRF5 and DAPI. Third from right, overlap between LEPR and ACTA2. Second from right, overlap between LEPR and ADGRF5. Far right, overlap between LEPR, ACTA2, and ADGRF5. Scale bar, 250 μm. Images in ad are representative of 4 biologically independent experiments.

Source data

Extended Data Fig. 2 COL3A1, S100A4, SM22A, ACTA2, FBLN2, and SDC4 are expressed by peri-implant fibrotic tissue in both human and mice.

Expression of COL3A1 (a, green), S100A4 (c, green), SM22A (e, green), ACTA2-RFP (g, green), FBLN2 (i, green), SDC4 (k, green) in murine peri-implant fibrotic tissue and its overlap with LepR tdTomato cells (red). Scale bar, 50 μm. Expression of COL3A1 (b, green), S100A4 (d, green), SM22A (f, green), ACTA2 (h, green), FBLN2 (j, green), SDC4 (l, green) in human peri-implant fibrotic tissue and its overlap with LEPR+ cells (red). Scale bar, 50 μm. Images in a–l are representative of at least 3 independent biological replicates.

Source data

Extended Data Fig. 3 A subset of LEPR+ cells in the peri-implant fibrotic tissue expresses Cxcl12-GFP.

a, Expression of LepR-tdTomato and Cxcl12-GFP in the peri-implant fibrotic tissue of LepRcre;Rosa26tdTomato; Cxcl12GFP mice underwent fibrous-integrated surgery at postoperative day 14. A subset of LEPR+ cells (red) co-localize with cells expressing Cxcl12 (green). Scale bar, 500 μm. b-e, Enlarged view of the outlined blue box of figure in panel a. Scale bar, 50 μm. Images in a-e are representative of at least 3 independent experiments. f, Expression of LepR-tdTomato and Cxcl12-GFP in the peri-implant osseous tissue of LepRcre;Rosa26tdTomato; Cxcl12GFP mice underwent osseointegrated surgery at postoperative day 14. A subset of LEPR+ cells (red) in the perivascular area co-localizes with cells expressing Cxcl12 (green). Scale bar, 500 μm. gj, Enlarged view of the outlined blue box of figure in panel f. Scale bar, 50 μm. Images in f-j are representative of at least 3 independent experiments. kl, Expression of CXCL12-GFP by Lin-LepR-tdTomato+ (k) or osseointegrated surgery (l). m-n, Immunofluorescence quantification of expression of and Cxcl12-GFP in LepRcre;Rosa26tdTomato; Cxcl12GFP mice underwent fibrous-integrated or osseointegrated surgery at postoperative day 14. Data are mean ± s.d. n = 11 for both osseointegrated and fibrous-integrated model. n, Immunofluorescence quantification of co-localization between of LepR-tdTomato and Cxcl12-GFP in LepRcre;Rosa26tdTomato; Cxcl12GFP mice underwent fibrous-integrated or osseointegrated surgery at postoperative day 14. Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. n = 11 for both osseointegrated and fibrous-integrated model. Each dot in m and p corresponds to biologically independent replicates.

Source data

Extended Data Fig. 4 Small percentage of Lin 6C3 CD90CD200+ CD105 (mSSC) and Lin 6C3CD90 CD200var CD105+ (BCSP) are Lin LepR tdTomato+.

a, Schematic of flow cytometry comparison experiment between LepRcre;Rosa26tdtomato mice underwent fibrous-integrated or osseointegrated implantation surgery at postoperative day 14. b-d, Schematic representation of the strategy used for FACS analysis of Lin 6C3 CD90 CD200+ CD105 (mSSC) and Lin-6C3-CD90-CD200varCD105+ (BCSP)of mice underwent fibrous integrated surgery (c) or osseointegrated surgery (d). ef, There is no difference in abundance of mSSC and BCSP in the peri-implant area between fibrous- and osseointegrated mice. Data are mean ± s.d. Unpaired, two-tailed Student’s t-test. n = 8 for fibrous-integrated model and n = 9 for osseointegrated model. g, TdTomato+ subset of Lin 6C3 CD90 CD200+ CD105 are more abundant in fibrous-integrated peri-implant area than in osseointegrated peri-implant area. Data are mean ± s.d. Unpaired, two-tailed Student’s t-test. n = 8 for fibrous-integrated model and n = 9 for osseointegrated mode. h, There is no statistically significant difference in the abundance of tdTomato+ subset of Lin-6C3 CD90 CD200var CD105+ in fibrous-integrated peri-implant and in osseointegrated peri-implant area. Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. n = 8 for fibrous-integrated model and n = 9 for osseointegrated model. i, LepR– tdTomato+ cells in fibrous-integrated interface were immunostained for CD200 demonstrating presence of LepR-TdTomato+ CD200+ at the bone-fibrous tissue interface. Scale bar, 500 μm. Middle column and right column enlarged view of the outlined yellow box. Scale bar, 50 μm. j, LepR tdTomato+ cells in osseointegrated interface were immunostained for CD200 demonstrating presence of LepR TdTomato+ CD200+ at the perivascular area. Scale bar, 500 μm. Middle column and right column, enlarged view of the outlined yellow box. Scale bar, 50 μm. Each dot in eh corresponds to biologically independent replicates. Images in bd, ij are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 5 A subset of LEPR+ cells in the peri-implant.

a, Expression of LepR-zsGreen and Acta2-RFP in the peri-implant fibrotic tissue of LepRcre;Rosa26Zsgreen; Acta2mRFP mice underwent fibrous-integrated surgery at postoperative day 14. A subset of LEPR+ cells (green) co-localize with cells expressing Acta2 (red). Scale bar, 500 μm. b-e, Enlarged view of the outlined yellow box of the figure in panel a. Scale bar, 50 μm. Images in a-e are representative of at least 3 independent experiments. f, Expression of LepR-zsGreen and Acta2-RFP in the peri-implant osseous tissue of LepRcre;Rosa26Zsgreen; Acta2mRFP mice underwent osseointegrated surgery at postoperative day 14. A subset of LEPR+ cells (green) in the perivascular area co-localize with cells expressing Acta2 (red). Scale bar, 500 μm. Images in a are representative of at least 3 independent experiments. gj, Enlarged view of the outlined yellow box of figure in panel f. Scale bar, 50 μm. Images in fj are representative of at least 3 independent experiments. kl, Representation of the strategy used for FACS analysis of expression of LepR-zsGreen and Acta2-RFP in Lin-6C3-CD90-CD200+ CD105 fibrous integrated surgery (k) or osseointegrated surgery (l). LepRcre;Rosa26Zsgreen; Acta2mRFP (red), LepRcre;Rosa26Zsgreen (blue). m-n, Immunofluorescence quantification of expression of LepR-zsGreen and Acta2-RFP in LepRcre;Rosa26Zsgreen; Acta2mRFP mice underwent fibrous-integrated or osseointegrated surgery at postoperative day 14. Data are mean ± s.d. n = 5 for both osseointegrated and fibrous-integrated model. Unpaired, two-tailed Student’s t-test. o, Immunofluorescence quantification of co-localization between LepR-zsGreen and Acta2-RFP in LepRcre;Rosa26Zsgreen; Acta2mRFP mice underwent fibrous-integrated or osseointegrated surgery at postoperative day 14. Data are mean ± s.d. n = 5 for both osseointegrated and fibrous-integrated model; Unpaired, tailed Student’s t-test. p, Flow cytometry quantification of relative abundance of Lin-LepR-Zsgreen+ Acta2-RFP+ 6C3CD90 CD200+ CD105 in LepRcre;Rosa26Zsgreen; Acta2mRFP mice underwent fibrous-integrated or osseointegrated surgery at postoperative day 14. Data are mean ± s.d. n = 5 for both osseointegrated and fibrous-integrated model; Unpaired, two-tailed Student’s t-test. Each dot in m-p corresponds to biologically independent replicates. Images in k-l are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 6 Peri-implant fibrotic tissue originate from osteogenic LEPR+ cells.

ac, Immunofluorescent imaging of proximal tibia of LepRcre;Rosa26tdtomato, BGLAP-GFP that underwent fibrous-integration surgery at post-operative day 3 (a), 7 (b), and 14 (c). Scale bar, 50 μm. df, Immunofluorescent imaging of ALPL-stained proximal tibia of LepRcre;Rosa26tdtomato, BGLAPGFP that underwent fibrous-integration surgery at post-operative day 3 (d), 7 (e), and 14 (f). Scale bar, 50 μm. g, Violin plots showing the expression density levels of Alpl and Bglap showed that they are selectively expressed by osteogenic (OLC1, OLC2) and chondrogenic (CLC) cells. h, Immunofluorescence quantification of co-localization between LepR-tdTomato and BGLAP-GFP in LepRcre;Rosa26tdtomato, BGLAPGFP mice underwent fibrous-integrated surgery at postoperative day 3, 7, and 14. Data are mean ± s.d. n = 6 for both osseointegrated and fibrous-integrated model; Unpaired, tailed Student’s t-test. i, Immunofluorescence quantification of co-localization between LepR-tdTomato and ALPL antibody staining in LepRcre;Rosa26tdtomato, BGLAPGFP mice underwent fibrous-integrated surgery at postoperative day 3, 7, and 14. Data are mean ± s.d. n = 6 for both osseointegrated and fibrous-integrated model; Unpaired, tailed Student’s t-test. j, Immunofluorescence quantification of tdTomato+ cells from CXCL12creERT2;Rosa26tdtomato, AdipoqcreERT2;Rosa26tdtomato and LepRcre;Rosa26tdtomato that underwent fibrous-integration surgery. N = 7 per group. Data are mean ± s.d.; two-tailed unpaired t-test. k-m, Immunofluorescent imaging of CXCL12creERT2;Rosa26tdtomato (k), AdipoqcreERT2;Rosa26tdtomato (l), and LepRcre;Rosa26tdtomato (m) that underwent fibrous-integration surgery at post-operative day 14. Each dot in h-j corresponds to biologically independent replicates. Images in af, km are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 7 Peri-implant fibrosis is persistent up to at least 16 weeks in murine model of peri-implant fibrosis.

a, Micro-computed tomography (μCT) of proximal tibia of LepRcre;Rosa26tdtomato underwent fibrous-integrated surgery at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. b, Hematoxylin and eosin staining of proximal tibia of LepRcre;Rosa26tdtomato underwent fibrous-integrated surgery at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. c, Immunofluorescent imaging proximal tibia of LepRcre;Rosa26tdtomato underwent fibrous-integrated surgery at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. Bottom row, enlarged view of the outlined yellow box at each time-point. Scale bar, 50 μm. d, Bone volume/total volume (BV/TV)) of mice at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6. e, Histology quantification of peri-implant fibrosis (% Fibrosis) and peri-implant bone (% bone) of mice at at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6. f, Immunofluorescent quantification of peri-implant fibrosis (% Fibrosis) and peri-implant bone (% bone) of mice at at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6. Each dot in d-f corresponds to biologically independent replicates. Images in a–c are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 8 Analysis of peri-implant bone of mice underwent osseointegrated surgery at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks.

a, Micro-computed tomography (μCT) of proximal tibia of LepRcre;Rosa26tdtomato underwent osseointegrated surgery at post-operative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. b, Haematoxylin and eosin staining of proximal tibia of LepRcre;Rosa26tdtomato underwent osseointegrated surgery at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. c, Immunofluorescent imaging proximal tibia of LepRcre;Rosa26tdtomato underwent osseointegrated surgery at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Scale bar, 500 μm. Bottom row, enlarged view of the outlined yellow box at each time-point. Scale bar, 50 μm. d, Bone volume/total volume (BV/TV) of mice at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6. e, Histology quantification of peri-implant fibrosis (% Fibrosis) and peri-implant bone (% bone) of mice at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6; 3 independent experiments. f, Immunofluorescent quantification of peri-implant fibrosis (% Fibrosis) and peri-implant bone (% bone) of mice at postoperative day 3, day 7, 2 weeks, 4 weeks, 8 weeks, and 16 weeks. Data are mean ± s.d. n = 6. Each dot in d-f corresponds to biologically independent replicates. Images in a-c are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 9 Human mSSC (Lin PDPN+ CD146 CD164+ CD73+) are more abundant in bone than in fibrous membranes, but Lin LEPR+ are more abundant in fibrous membranes than in bone.

a, Schematic representation of the strategy used for FACS analysis to obtain Lin- population. bc, Schematic representation of the strategy used for FACS analysis to obtain LEPR expressing a subset of Lin PDPN+ CD146 CD164+ CD73+ from bone (b) or from fibrous tissue (c). d, Flow cytometry quantification of human fibrous tissue and bone demonstrates human mSSC (Lin PDPN+ CD146 CD164+ CD73+) are more abundant in bone than in fibrous membrane. Data are mean ± s.d. n = 10 patients for fibrous membrane and n = 10 for bone patients. Unpaired, two-tailed Student’s t-test. e, Flow cytometry quantification of human fibrous tissue and bone demonstrates the non-significant difference in osteolineage progenitor (LinPDPN+ CD146+) between fibrous membrane and bone. Data are mean ± s.d. n = 10 for fibrous membrane and n = 10 for bone. Unpaired, two-tailed Student’s t-test. f, Flow cytometry quantification of human fibrous tissue and bone demonstrates significantly higher amount of Lin LEPR+ PDPN+ CD146 in the fibrous membrane than in bone. Data are mean ± s.d. n = 10 patients for fibrous membrane and n = 10 patients for bone. Unpaired, two-tailed Student’s t-test. Each dot in d-f corresponds to biologically independent replicates. Images in a-c¬ are representative of at least 3 independent experiments.

Source data

Extended Data Fig. 10 Administration of neutralizing antibody against reduces LepR tdTomato+ cells but does not affect Lin 6C3 CD90 CD200+ CD105 (mSSC) subpopulation.

a, Immunofluorescent imaging of CD200-antibody stained. proximal tibia of LepRcre;Rosa26tdtomato receiving either anti-ADGRF5 or isotype control as prophylaxis. Scale bar, 500 μm. Right column, enlarged view of the outlined yellow box. Scale bar, 50 μm. b, Immunofluorescent imaging of CD200-antibody-stained proximal tibia of LepRcre;Rosa26tdtomato receiving either anti-ADGRF5 or isotype control as treatment starting from postoperative day 14. Scale bar, 500 μm. Right column, enlarged view of the outlined yellow box. Scale bar, 50 μm. c,f FACS analysis of TdTomato+ subset of Lin-6C3 CD90CD200+ CD105 (TdTomato+ mSSC) in mice group receiving anti-ADGRF5 as compared to isotype control, either as prophylaxis (c) or as treatment (f). Anti-ADGRF5 (n = 5), isotype control (n = 5). Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. d,g, FACS analysis of Lin 6C3 CD90 CD200+ CD105 (mSSC) between mice receiving daily anti-ADGRF5 or isotype control either as prophylaxis (d) or as treatment (f). Anti-ADGRF5 (n = 5), isotype control (n = 5). ns= not significant. Unpaired, two-tailed Student’s t-test. treatment (f). Anti-ADGRF5 (n = 5), isotype control (n = 5). Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. e, Host bone-implant failure load of LepRcre;Rosa26tdtomato receiving either daily anti-ADGRF5 or isotype control as prophylaxis at postoperative day 28. n = 5 for mice receiving anti-ADGRF5 and n = 5 for mice receiving isotype control. Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. h, Host bone-implant failure load of LepRcre;Rosa26tdtomato receiving either daily anti-ADGRF5 or isotype control as treatment starting from postoperative day 14 and evaluated at postoperative day 28. n = 5 for mice receiving anti-ADGRF5 and n = 5 for mice receiving isotype control. Unpaired, two-tailed Student’s t-test. Data are mean ± s.d. Images in a-b are representative of at least 3 independent biological replicates. Each dot in c–e and f–h corresponds to biologically independent replicates.

Source data

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhardi, V.J., Oktarina, A., Hammad, M. et al. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat. Biomed. Eng 8, 1285–1307 (2024). https://doi.org/10.1038/s41551-024-01238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-024-01238-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing