Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution and diversity of oxidoreductases involved in redox balance and energy conservation

Abstract

The regulation of redox balance and energy conservation is fundamental to life and relies on a large evolutionary network of oxidoreductases forming homologous protein complexes, collectively termed HORBEC (homologous oxidoreductase complexes involved in redox balance and energy conservation). These include hydrogenases, respiratory complex I and electron-bifurcating complexes, central to respiration, fermentation and methanogenesis. Despite their crucial role, a comprehensive investigation of the diversity and evolutionary history of HORBEC has been lacking. Here we exhaustively identified and analysed over 50 protein families representing all HORBEC components across thousands of bacterial and archaeal genomes. We propose a unified nomenclature and classification encompassing 31 complexes and provide an annotation tool. We highlight the extensive diversity of HORBEC, especially in Archaea. We provide information on overlooked systems and identify a new one probably acting as a cation transport platform. We show that HORBEC originated via extensive tinkering of ancestral modules, driven by strong evolutionary constraints. Finally, we infer the presence of respiratory complex I in the last universal common ancestor, opening questions on its potential role in early energy metabolisms. This work provides an evolutionary framework for HORBEC, representing a fundamental resource to predict and study redox metabolisms of ecological and biotechnological significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles and function of HORBECs.
Fig. 2: Diversity of HORBEC.
Fig. 3: Schematic representation of phylogenetic relationships between components among core HORBEC homologue families.
Fig. 4: Examples of modularity of HORBEC at different scales.
Fig. 5: Taxonomic distribution of HORBECs in Bacteria and Archaea.
Fig. 6: Phylogeny of Nuo, based on the concatenation of NuoB, NuoC, NuoD, NuoH, NuoJ and NuoK.

Data availability

The supplementary data are available via figshare at https://doi.org/10.6084/m9.figshare.30090436 (ref. 134). The metagenome-assembled genomes are available on NCBI (BioProjects number PRJNA692327 and PRJNA1112871).

Code availability

The script HORBEC-finder.py v.1 is available via figshare at https://doi.org/10.6084/m9.figshare.30090436 (ref. 134).

References

  1. Buckel, W. Energy conservation in fermentations of anaerobic bacteria. Front. Microbiol. 12, 703525 (2021).

  2. Ezraty, B., Gennaris, A., Barras, F. & Collet, J. F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15, 385–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Kaila, V. R. I. & Wikström, M. Architecture of bacterial respiratory chains. Nat. Rev. Microbiol. 19, 319–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Okazaki, K. I. et al. Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting. Nat. Commun. 10, 1742 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta 1850, 488–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, B. et al. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat. Struct. Mol. Biol. 27, 561–569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wells, M., Kim, M., Akob, D. M., Basu, P. & Stolz, J. F. Impact of the dimethyl sulfoxide reductase superfamily on the evolution of biogeochemical cycles. Microbiol. Spectr. 11, e04145-22 (2023).

  8. Zuchan, K., Baymann, F., Baffert, C., Brugna, M. & Nitschke, W. The dyad of the Y-junction and a flavin module unites diverse redox enzymes. Biochim. Biophys. Acta Bioenergetics 1862, 148401 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Peters, J. W. et al. FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Zacarias, S. et al. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Methods Enzymol. 613, 169–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schoelmerich, M. C. & Müller, V. Energy-converting hydrogenases: the link between H2 metabolism and energy conservation. Cell. Mol. Life Sci. 77, 1461–1481 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Moparthi, V. K. & Hägerhäll, C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J. Mol. Evol. 72, 484–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, H. et al. Structure of an ancient respiratory system. Cell 173, 1636–1649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katsyv, A. & Müller, V. A purified energy-converting hydrogenase from Thermoanaerobacter kivui demonstrates coupled H+-translocation and reduction in vitro. J. Biol. Chem. 298, 102216 (2022).

  17. Shaw, A. J., Hogsett, D. A. & Lynd, L. R. Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J. Bacteriol. 191, 6457–6464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katsyv, A. et al. Molecular basis of the electron bifurcation mechanism in the [FeFe]-hydrogenase complex HydABC. J. Am. Chem. Soc. 145, 5696–5709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanai, T. et al. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production. Front. Microbiol. 6, 847 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sapra, R., Bagramyan, K. & Adams, M. W. W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl Acad. Sci. USA 100, 7545–7550 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in Archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Downing, B. E. & Nayak, D. D. Innovations in the electron transport chain fuel archaeal methane metabolism. Trends Biochem. Sci. 50, 425–437 (2025).

  23. Major, T. A., Liu, Y. & Whitman, W. B. Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J. Bacteriol. 192, 4022–4030 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lie, T. J. et al. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc. Natl Acad. Sci. USA 109, 15473–15478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piché-Choquette, S. & Constanta, P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl. Environ. Microbiol. 85, e02418-18 (2019).

  26. CONRAD, R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 30, 25–39 (2020).

    Article  CAS  Google Scholar 

  27. Kasting, J. F. & Siefert, J. L. Life and the evolution of Earth’s atmosphere. Science. 296, 1066–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Mertens, R. & Liese, A. Biotechnological applications of hydrogenases. Curr. Opin. Biotechnol. 15, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad, A., Rambabu, K., Hasan, S. W., Show, P. L. & Banat, F. Biohydrogen production through dark fermentation: recent trends and advances in transition to a circular bioeconomy. Int. J. Hydrogen Energy 52, 335–357 (2024).

    Article  CAS  Google Scholar 

  30. Kanwal, F. et al. Biohydrogen—a green fuel for sustainable energy solutions. Energies 15, 7783 (2022).

  31. Contreras, G. et al. New perspectives for biotechnological applications of methanogens. Curr. Res. Biotechnol. 4, 468–474 (2022).

    Article  CAS  Google Scholar 

  32. Lee, S. H., Kim, M. S., Kang, S. G. & Lee, H. S. Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes. Biotechnol. Biofuels 12, 24 (2019).

  33. Kawaichi, S., Kotoky, R., Fiutowski, J. & Rotaru, A. E. Adaptation of a methanogen to Fe0 corrosion via direct contact. NPJ Biofilms Microbiomes 10, 100 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolata, P. & Efremov, R. G. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 10, e68710 (2021).

  35. Laughlin, T. G., Bayne, A. N., Trempe, J. F., Savage, D. F. & Davies, K. M. Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature. 566, 411–414 (2019).

    Article  PubMed  Google Scholar 

  36. Steiner, J. & Sazanov, L. Structure and mechanism of the MRP complex, an ancient cation/proton antiporter. eLife 9, e59407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beaton, S. E. et al. The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping. Biochem. J. 475, 1353 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Fritsch, J. et al. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479, 249–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Steinhilper, R., Höff, G., Heider, J. & Murphy, B. J. Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Nat. Commun. 13, 5395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, H. et al. Structure of the respiratory MBS complex reveals iron–sulfur cluster catalyzed sulfane sulfur reduction in ancient life. Nat. Commun. 11, 5953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furlan, C. et al. Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase. eLife 11, e79361 (2022).

  42. Berrisford, J. M., Baradaran, R. & Sazanov, L. A. Structure of bacterial respiratory complex I. Biochim. Biophys. Acta Bioenergetics 1857, 892–901 (2016).

    Article  CAS  Google Scholar 

  43. Zhang, X. C. & Li, B. Towards understanding the mechanisms of proton pumps in complex-I of the respiratory chain. Biophys. Rep. 5, 219–234 (2019).

    Article  Google Scholar 

  44. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357–3372 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).

  47. Appel, L., Willistein, M., Dahl, C., Ermler, U. & Boll, M. Functional diversity of prokaryotic HdrA(BC) modules: role in flavin-based electron bifurcation processes and beyond. Biochim. Biophys. Acta Bioenergetics 1862, 148379 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Schut, G. J. et al. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. Biochim. Biophys. Acta Bioenergetics 1857, 958–970 (2016).

    Article  CAS  Google Scholar 

  49. Schut, G. J., Boyd, E. S., Peters, J. W. & Adams, M. W. W. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol. Rev. 37, 182–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, H., Schut, G. J., Haja, D. K., Adams, M. W. W. & Li, H. Evolution of complex I-like respiratory complexes. J. Biol. Chem. 296, 100740 (2021).

  51. Brandt, U. Adaptations of an ancient modular machine. Science 363, 230–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Friedrich, T. Complex I: a chimaera of a redox and conformation-driven proton pump. J. Bioenerg. Biomembr. 33, 169–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Novakovsky, G. E., Dibrova, D. V. & Mulkidjanian, A. Y. Phylogenomic analysis of type 1 NADH:quinone oxidoreductase. Biochemistry 81, 770–784 (2016).

    CAS  PubMed  Google Scholar 

  54. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

  55. Moody, E. R. R. et al. The nature of the last universal common ancestor and its impact on the early Earth system. Nat. Ecol. Evol. 8, 1654–1666 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boyd, E. S., Schut, G. J., Adams, M. W. W. & Peters, J. W. Hydrogen metabolism and the evolution of biological respiration: two separate families of enzymes that oxidize hydrogen and also produce it arose through convergent evolution. Microbe Magazine 9, 361–367 (2014).

    Article  Google Scholar 

  57. Alleman, A. B., Costas, A. G., Mus, F. & Peters, J. W. Rnf and Fix have specific roles during aerobic nitrogen fixation in Azotobacter vinelandii. Appl. Environ. Microbiol. 88, e01049-22 (2022).

  58. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Raba, D. A. et al. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J. Biol. Chem. 293, 15664–15677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marreiros, B. C., Batista, A. P., Duarte, A. M. S. & Pereira, M. M. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Biochim. Biophys. Acta 1827, 198–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Coppi, M. V. The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology 151, 1239–1254 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Loh, H. Q., Hervé, V. & Brune, A. Metabolic potential for reductive acetogenesis and a novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts—a genome-centric analysis. Front. Microbiol. 11, 635786 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Padalko, A., Nair, G. & Sousa, F. L. Fusion/fission protein family identification in Archaea. mSystems 9, e00948-23 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Caserta, G. et al. Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat. Chem. Biol. 19, 498–506 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Lacasse, M. J. & Zamble, D. B. [NiFe]-Hydrogenase maturation. Biochemistry 55, 1689–1701 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Ito, M., Morino, M. & Krulwich, T. A. Mrp antiporters have important roles in diverse bacteria and archaea. Front. Microbiol. 8, 306030 (2017).

    Article  Google Scholar 

  67. Hreha, T. N. et al. Complete topology of the RNF complex from Vibrio cholerae. Biochemistry 54, 2443–2455 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, Y. J. et al. Formate-driven growth coupled with H2 production. Nature 467, 352–7355 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Chadwick, G. L., Hemp, J., Fischer, W. W. & Orphan, V. J. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 12, 2668–2680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma, V. et al. Redox-induced activation of the proton pump in the respiratory complex I. Proc. Natl Acad. Sci. USA 112, 11571–11576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sazanov, L. A. & Hinchliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311, 1430–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I. Science 370, eabc4209 (2020).

  73. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

  74. Garcia, P. S. et al. An early origin of iron–sulfur cluster biosynthesis machineries before Earth oxygenation. Nat. Ecol. Evol. 6, 1564–1572 (2022).

    Article  PubMed  Google Scholar 

  75. Dussouchaud, M. Ancestral [Fe-S] biogenesis system SMS has a unique mechanism of cluster assembly and sulfurutilization. PLoS Biol. 23, e3003223 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E. & Newman, D. K. The continuing puzzle of the great oxidation event. Curr. Biol. 19, R567–R574 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez, L. E. et al. Chapter 4: A geological and chemical context for the origins of life on early Earth. Astrobiology 24, S76–S106 (2024).

    Article  PubMed  Google Scholar 

  78. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Evolutionary primacy of sodium bioenergetics. Biol. Direct 3, 13 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gribaldo, S., Talla, E. & Brochier-Armanet, C. Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem. Sci. 34, 375–381 (2009).

  80. Schoepp-Cothenet, B. et al. On the universal core of bioenergetics. Biochim. Biophys. Acta 1827, 79–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Elling, F. J. et al. A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism. Proc. Natl Acad. Sci. USA 122, e2421994122 (2025).

  82. Ducluzeau, A. L. et al. Was nitric oxide the first deep electron sink. Trends Biochem. Sci 34, 9–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Davín, A. A. et al. A geological timescale for bacterial evolution and oxygen adaptation. Science 388, eadp1853 (2025).

    Article  PubMed  Google Scholar 

  84. Jabłońska, J. & Tawfik, D. S. Innovation and tinkering in the evolution of oxidases. Protein Sci. 31, e4310 (2022).

  85. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Xavier, J. C. et al. The metabolic network of the last bacterial common ancestor. Commun. Biol. 4, 413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chadwick, G.L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).

  88. Zhou, Z. et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601, 257–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Dong, X. et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nat. Commun. 11, 5825 (2020).

  90. Liu, Y. F. et al. Genomic and transcriptomic evidence supports methane metabolism in Archaeoglobi. mSystems 5, e00651-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hua, Z. S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y. et al. RETRACTED: A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci Adv. 7, eabd7180 (2021).

  93. Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).

  94. Colman, D. R., Lindsay, M. R. & Boyd, E. S. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat. Commun. 10, 681 (2019).

  95. Dombrowski, N., Teske, A.P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

  96. Lin, X., Handley, K. M., Gilbert, J. A. & Kostka, J. E. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J. 9, 2740–2744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat. Commun. 5, 3212 (2014).

  98. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 16, 307–320 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Ramírez, G. A. et al. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS ONE 16, e0256321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Appler, K.E. et al. Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor. Preprint at bioRxiv https://doi.org/10.1101/2024.07.04.601786 (2024).

  102. Carlton, J. D. et al. Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles. ISME Commun. 3, 64 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  105. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

  108. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Kang, D. D., Froula, J. & Egan, R. Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015, e1165 (2015).

    Article  Google Scholar 

  110. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Uritskiy, G. V., Diruggiero J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

  114. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

  121. Balaban, M., Moshiri, N., Mai, U., Jia, X. & Mirarab, S. TreeCluster: clustering biological sequences using phylogenetic trees. PLoS ONE 14, e0221068 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

  123. Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Garcia, P. S, Jauffrit, F., Grangeasse, C. & Brochier-Armanet, C. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics 35, 329–331 (2019).

  126. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

  127. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ishikawa, S. A., Zhukova, A., Iwasaki, W. & Gascuel, O. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36, 2069–2085 (2019).

  132. Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014, e243 (2014).

    Article  Google Scholar 

  133. Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Garcia, P., De Anda, V., Baker, B. J., Gribaldo, S. & Borrel, G. Supplementary data of Garcia et al. figshare https://doi.org/10.6084/m9.figshare.30090436 (2025).

Download references

Acknowledgements

We thank the EBMC team and R. Arias-Cartín for feedback and discussion. We thank K. Appler for genome repository at NCBI. We thank the computational and storage services (TARS cluster) provided by the IT department, particularly S. Creno, at Institut Pasteur, Paris. This work was supported by the French National Agency for Research (grant nos. Methevol ANR-19-CE02-0005-01 and ANR LBX-62 IBEID GRANT INTRA LABEX) and by the Moore-Simons Project on the Origin of the Eukaryotic Cell, Simons Foundation grant no. 73592LPI (https://doi.org/10.46714/735925LPI) (to B.J.B.) and a Simons Foundation investigator award LI-SIAME-00002001 (to B.J.B.).

Author information

Authors and Affiliations

Authors

Contributions

S.G. and G.B. conceived and designed the experiments. P.S.G. performed the experiments. P.S.G. and G.B. analysed the data. V.d.A. and B.J.B. contributed materials/analysis tools. P.S.G., S.G. and G.B. wrote the paper.

Corresponding authors

Correspondence to Pierre Simon Garcia or Guillaume Borrel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jagoda Jabłońska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic representation of phylogenetic relationships between components among HORBEC homologue families.

Each schematic corresponds to a homologue family, from AA to BZ. AB, AC, AD, AH, AJ, AK, AL, AO, AP, AQ, AR families are represented in Fig. 3. The schematics are based on unrooted consensus of multiple trees and subtrees, inferred using Fasttree. Each triangle corresponds a component, colored by the HORBEC it belongs to. Light gray triangles correspond to non-classified sequences, dark gray to unrelated families. The size of triangles represents approximatively the size of the subfamilies. The length of branches is not proportional to real phylogenetic branches. The names in red indicate that several sequences are fused with another family, indicated between parentheses.

Extended Data Fig. 2 Alignment of the two hydrogenase [NiFe]-center coordination motifs (N-ter RxCGxCxxxH and C-ter DPCxxCxxH/R) from the AD family.

The alignment is split in three groups of AD representatives: A) those missing most of the conserved residues of the motifs (in particular the cysteines), B) those of membrane-bound hydrogenase complexes and C) those of cytosolic hydrogenase complexes. Conserved cysteines are in red, other residues mostly conserved in both membrane and cytosolic hydrogenase complexes are in blue, those mostly conserved in membrane-bound hydrogenase complexes are in yellow and those from cytosolic hydrogenase complexes are in pink.

Extended Data Fig. 3 Diversity of genomic cluster organization of the different HORBEC.

For each system and for each organization, the total number of systems, the number of systems in Bacteria (B) and Archaea (A) and the number of systems found at the edge of a contig are indicated. For each system, the number of possible subunits is shown. The Shannon index that estimates the diversity of the system in terms of organization has been calculated. The pie charts show the distribution of the number of genomic clusters for each observed organization. Only the organizations that are more widespread and corresponding to the first half of the total number of genomic clusters are shown in detail.

Extended Data Fig. 4 The diversity of Ehi genme organization.

The theoretical model of protein complexes from the genomic information is represented. Each subunit is represented by shapes colored by the corresponding module. For each subunit, the top letters correspond to the protein family code (AA-BZ), the letters between parentheses indicates the name of the subunit.

Extended Data Fig. 5 Fusions across subunit datasets.

A. Graph of fusions between datasets of subunits. Each node corresponds to a subunit dataset. The number of shared sequences between datasets are indicated on the edges. The datasets that correspond to the same subunit but have been found in two homologue families are surrounded by a gray rectangle. B, C and D. Fusions mapped on the schematic structure of HORBEC. Only the main subunits are indicated (N-, Q-, P-, and Na- modules). B: membrane-bound HORBEC with oxidoreductase activity, C: cytosolic HORBEC, D: membrane-bound HORBEC without oxidoreductase activity.

Extended Data Fig. 6 Comparison of HORBEC and energetic metabolism distribution.

A. Taxonomic distribution of HORBECs and markers of several metabolisms in Bacteria and Archaea. The reference phylogenies have been inferred using IQ-TREE (See Methods) and are represented as cladograms. Each triangle corresponds to a clade (phylum/class/order/family). Dots at the branches indicate ultra-fast bootstrap suppports ≥95. The rectangles correspond to the presence of HORBEC/metabolic markers in each clade. For each clade, the size of the rectangles reflects the proportion of genomes having a given HORBEC/metabolic marker. The stars indicate cases where the genes from a given HORBEC are present but scattered, meaning they could not be identified based on the gene cluster method. The characteristics of each HORBEC in terms of localization, role and reaction is indicated in the table above. For Nqr and Qmo, the electron donors and acceptors are underlined. NAD: Nicotinamide, Fdx: ferredoxin, Q: quinone, MP: Methanophenazine, HDS: heterodisulfide. B. Cooccurrence analysis between HORBEC and metabolism markers in Bacteria and Archaea. Node represent HORBEC (blue) and metabolism markers (green). Edges represent cooccurrence, with a Pearson correlation higher than 0.3 (indicated on the edge).

Extended Data Fig. 7 Global evolutionary scenario of HORBEC.

Time goes from the left to the right. Each line corresponds to inheritance links, notably inferred from the phylogenetic analysis presented in Fig. 2 and Extended Data Fig. 1. The color of lines and components corresponds to the modules. When only a subset of components from a module are inherited, these are indicated in rounded rectangles on the line. Fusion between several lines indicates a coevolution of components. The unresolved relative placements are represented by multifurcated branches. The length of branch is not proportional to time. “a” before the name of a system or a subunit means “ancestral”. The circles indicate if the HORBEC emerged likely in the universal (LUCA), bacterial (LBCA), archaeal (LACA) ancestors, or during diversification of Bacteria (BAC) and Archaea (ARC), in Cyanobacteria (C.b.), or in Methanosarcinales (M.s.). Because of their complexity in terms of evolution, HdrABCDE have not been represented. Rnf and Nqr are also not represented because they do not share homologous subunits with HORBEC. The AI family has not been included because of the lack of phylogenetic signal. The multiple copies of subunits and the functional domain modularity have not been represented.

Extended Data Fig. 8 Detailed evolutionary scenario of Mbs.

Each arrow corresponds to inheritance links, notably inferred from the phylogenetic analysis presented in Fig. 2. The color of arrows and components correspond to the modules. The length of the arrows/branchs is not proportional to time. Specific components that are added to a system are indicated on the arrows. The red dashed lines on complex schematics delineate the system subparts that have a different origin.

Extended Data Fig. 9 Network of possible electron transfers and interactions between the major HORBEC components/modules observed in this study.

The circles correspond to major modules and squares to major protein families. The color of components/modules fits with color code of Fig. 2. Black arrows between components/modules show electron transfer, the arrow indicating the potential directions. Gray lines correspond to an interaction. Dashed lines correspond to a hypothetical electron transfer. The width of arrows/lines reflects the strength of evolutionary link discussed in the text. Reduced compounds are shown in green and oxidized one in red. Vertical arrows associated with AL and Na-module indicate translocation of cations across the membrane. For AV and Q-module, the list below the name indicates the possible inputs and outputs of electrons from protein partners. AV needs an input and an output of electron while the Q-module by its ability to perform several redox reactions itself exhibits several combinations. The redox potential of each redox couple is indicated in the table on the bottom left.

Extended Data Table 1 Criteria used to infer the origin of the HORBECs

Supplementary information

Supplementary Information

Supplementary Figs. 1–43 and Discussion.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, P.S., De Anda, V., Baker, B.J. et al. Evolution and diversity of oxidoreductases involved in redox balance and energy conservation. Nat Ecol Evol (2026). https://doi.org/10.1038/s41559-025-02969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-025-02969-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing