Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo design of GPCR exoframe modulators

Abstract

G-protein-coupled receptors (GPCRs) are important therapeutic targets and have been targeted mainly through their orthosteric site, where the endogenous agonist binds1. However, allosteric modulation has emerged as a promising and innovative strategy in the realm of GPCR drug discovery1. Here, drawing inspiration from the natural regulation of GPCRs by transmembrane proteins, we have developed GPCR exoframe modulators (GEMs), de novo designed proteins that specifically target the transmembrane domain of GPCRs. Utilizing a hallucination-like design approach, we crafted GEMs with three strategic structural prompts to achieve the desired binding modes. We selected the dopamine D1 receptor as a prototypical model and systematically investigated four GEMs. Structural studies and functional assays revealed that these GEMs bind to the transmembrane domains and function as diverse allosteric modulators, including agonist-positive allosteric modulator, negative allosteric modulator and biased allosteric modulator. The ago-PAM GEM restores the activity of various D1 receptor loss-of-function mutants, suggesting a promising therapeutic target for GPCR-related disorders. Our work introduces GEMs that target the transmembrane domain as potent agents for allosteric GPCR modulation and highlights the potential of deep learning-based approaches in the design of function-oriented membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: De novo Design of GEM.
Fig. 2: In silico assessment of design results.
Fig. 3: High-resolution structures of de novo designed GEMs in complex with D1R.
Fig. 4: Structural assessment and molecular basis of GEM-mediated GPCR regulation.

Data availability

Atomic coordinates and cryo-EM maps have been deposited in the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB), respectively, under the following accessions: \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)–D1R–Gs (9LLE and EMD-63199), \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)–D1R–Gs (9LLF and EMD-63200), \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\)D1R (9LLG and EMD-63201), \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)–D1R–Gs (9LLH and EMD-63202), \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)\(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)\(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\)–D1R (9LLI and EMD-63203) and \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)\(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)\(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)–D1R–Gs (9LLJ and EMD-63204). All data produced or analysed in this study are included in the main text or the supplementary materials.

Code availability

RFDiffusion code and weights can be downloaded from https://github.com/RosettaCommons/RFdiffusion. ColabDesign implementation of ProteinMPNN is available from https://github.com/sokrypton/ColabDesign/. The local AF2 is available from https://github.com/YoshitakaMo/localcolabfold and AF2 model weights used for optimization and predictions can be downloaded from https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar.

References

  1. Lorente, J. S. et al. GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 24, 458–479 (2025).

    Article  CAS  PubMed  Google Scholar 

  2. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang, Y.-L. et al. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 546, 118–123 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, K. et al. Tail engagement of arrestin at the glucagon receptor. Nature 620, 904–910 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen, C. et al. Structural basis of GABAB receptor–Gi protein coupling. Nature 594, 594–598 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao, C. et al. Cryo-EM structures of inactive and active GABAB receptor. Cell Res. 30, 564–573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wen, T. et al. Molecular basis of β-arrestin coupling to the metabotropic glutamate receptor mGlu3. Nat. Chem. Biol. 21, 1262–1269 (2025).

    Article  CAS  PubMed  Google Scholar 

  10. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson, M. D. et al. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit. Rev. Clin. Lab. Sci. 61, 317–346 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Reid, K. M. et al. Loss-of-function variants in DRD1 in infantile parkinsonism-dystonia. Cells 12, 1046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, W., Guo, D.-Y. & Tao, Y.-X. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. Prog. Mol. Biol. Transl. Sci. 161, 181–210 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Gaylinn, B. D. et al. The mutant growth hormone-releasing hormone (GHRH) receptor of the little mouse does not bind GHRH. Endocrinology 140, 5066–5074 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. He, J. et al. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res. 52, D376–D383 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Koole, C. et al. Polymorphism and ligand dependent changes in human glucagon-like peptide-1 receptor (GLP-1R) function: allosteric rescue of loss of function mutation. Mol. Pharmacol. 80, 486–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leach, K. et al. Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology 154, 1105–1116 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Cong, Z. et al. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat. Commun. 12, 3763 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar, K. K. et al. Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 186, 1465–1477 (2023).

    Article  PubMed Central  Google Scholar 

  20. Chen, H., Qin, Y., Chou, M., Cyster, J. G. & Li, X. Transmembrane protein CD69 acts as an S1PR1 agonist. eLife 12, e88204 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, P. et al. Structural basis of signaling regulation of the human melanocortin-2 receptor by MRAP1. Cell Res. 33, 46–54 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, Y.-L. et al. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561, 492–497 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, J. et al. A structural basis for amylin receptor phenotype. Science 375, 1371 (2022).

    Article  Google Scholar 

  24. Liang, Y.-L. et al. Structure and dynamics of adrenomedullin receptors AM1 and AM2 reveal key mechanisms in the control of receptor phenotype by receptor activity-modifying proteins. ACS Pharmacol. Transl. Sci. 3, 263–284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J. et al. Predicting protein-protein interactions in the human proteome. Science 390, 353 (2025).

    Article  Google Scholar 

  26. Balbi, P. E. M. et al. Mapping targetable sites on the human surfaceome for the design of novel binders. Preprint at bioRxiv https://doi.org/10.1101/2024.12.16.628626 (2024).

  27. Yin, H. et al. Computational design of peptides that target transmembrane helices. Science 315, 1817–1822 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Mravic, M. et al. De novo designed transmembrane peptides activating the α5β1 integrin. Protein Eng. Des. Sel. 31, 181–190 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mravic, M. et al. De novo-designed transmembrane proteins bind and regulate a cytokine receptor. Nat. Chem. Biol. 20, 751–760 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennett, N. R. et al. Improving de novo protein binder design with deep learning. Nat. Commun. 14, 2625 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frank, C. et al. Scalable protein design using optimization in a relaxed sequence space. Science 386, 439–445 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacesa, M. et al. One-shot design of functional protein binders with BindCraft. Nature 646, 483–492 (2025).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, B. et al. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 638, 796–804 (2024).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Glögl, M. et al. Target-conditioned diffusion generates potent TNFR superfamily antagonists and agonists. Science 386, 1154–1161 (2024).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Duart, G. et al. Computational design of BclxL inhibitors that target transmembrane domain interactions. Proc. Natl Acad. Sci. USA 120, e2219648120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kortemme, T. De novo protein design—From new structures to programmable functions. Cell 187, 526–544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  42. Goverde, C. A. et al. Computational design of soluble and functional membrane protein analogues. Nature 631, 449–458 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roney, J. P. & Ovchinnikov, S. State-of-the-art estimation of protein model accuracy using AlphaFold. Phys. Rev. Lett. 129, 238101 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yim, J. et al. SE(3) diffusion model with application to protein backbone generation. In Proc. 40th International Conference on Machine Learning 40001–40039 (JMLR.org, 2023).

  45. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sahoo, P. et al. A systematic survey of prompt engineering in large language models: techniques and applications. Preprint at https://doi.org/10.48550/arXiv.2402.07927 (2024).

  47. Heo, L. & Feig, M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins 90, 1873–1885 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat. Commun. 13, 4366 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schöneberg, T. & Liebscher, I. Mutations in G protein–coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacol. Rev. 73, 89–119 (2021).

    Article  PubMed  Google Scholar 

  51. Kooistra, A. J. et al. GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res. 49, D335–D343 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, H. et al. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res. 31, 1163–1175 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gray, D. L. et al. Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat. Commun. 9, 674 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Wu, C. et al. Pharmacological characterization of dopamine receptor DRD1 variants and exploration of their allosteric activation. Biochemistry 64, 2200–2211 (2025).

    Article  CAS  PubMed  Google Scholar 

  55. Schweke, H. et al. An atlas of protein homo-oligomerization across domains of life. Cell 187, 999–1010 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  62. Zhuang, Y. et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184, 931–942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zivanov, J. et al. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 11, e83724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Teng, X. et al. Structural insights into G protein activation by D1 dopamine receptor. Sci. Adv. 8, eabo4158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leaver-Fay, A. et al. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. 66, 486–501 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Afonine, P. V. et al. Real-space refinement in Phenix for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  ADS  CAS  Google Scholar 

  71. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).

    Article  ADS  CAS  Google Scholar 

  72. He, Y., Jin, W.-Q., Shen, Q.-X., Chen, X.-J. & Jin, G.-Z. Expression of dopamine D1 receptor in Sf9 insect cells and agonism of l-12-chloroscoulerine on recombinant D1 receptor. Acta Pharmacol. Sin. 24, 225–229 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cryo-EM data were collected at the Cryo-Electron Microscopy Facility, Liangzhu Laboratory, Zhejiang University. We thank C. Ma for technical support. Cryo-EM specimens were examined with help from S. Chang at the Center of Cryo-Electron Microscopy (CCEM), Zhejiang University. This study was funded by the National Science and Technology Major Project (2022ZD0117000 to M.Z.), the National Natural Science Foundation of China (92353303, 32430051 and 32141004 to Y.Z., 62202426 to M.Z.), the Pioneer and Leading Goose R&D Program of Zhejiang (2024C03147 to Y.Z.); the Fundamental Research Funds for the Central Universities (226-2022-00205 to Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived, designed and supervised the overall project. M.Z. and Y.Z. supervised the computational part of the project. X.Z. supervised the receptor binding assay. S.C. developed the binder design pipeline and designed the GEMs. Y.-L.Z., J.G., X.L., Y.-Z.Z., Y.Y. and P.X. prepared the constructs for functional assays and performed the cellular functional assays. J.G. and Y.-L.Z. prepared the constructs for protein purification and purified the GEM–D1R complexes. D.-D.S. evaluated the samples by negative-stain electron microscopy. J.G. and Y.-L.Z. prepared the cryo-EM grids. J.G. and S.Z. collected the cryo-EM data. J.G. performed cryo-EM map calculation and model building. G.Z. and H.Y. performed the receptor binding assay. S.C., J.G., Y.-L.Z. and X.L. prepared the figures. S.C., J.G. and Y.Z. wrote the manuscript with the input from the other authors.

Corresponding authors

Correspondence to Min Zhang or Yan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Justin English, David Thal and Jason Yim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Probing D1R transmembrane domain with single helices.

a-c, Surface overview of probe-targeting sites for RFdiffusion binder protocol. The presented surface of D1R (PDB: 7LJC59) is colored by electrostatic potential. The approximate targeting regions are highlighted in yellow for cavity near TM1/2/4 (a), cavity near TM3/4/5 (b), and cavity near TM5/6 (c). d, Cartoon overview of probe-targeting sites. e, SeqLogo of probing sequences. Probes designed as binders with scaffolds generated with RFDiffusion binder protocol targeting TM1/2/4, TM3/4/5 and TM5/6. ProteinMPNN input the resulting complex structures and design sequences for probes only. f, Binding conformation of probing, predicted with AF2, colored by pLDDT. The probe-receptor complex predicted for probes designed as binder. Probes having clashes with the receptor are hidden (distance cutoff set as 0.8 Å).

Extended Data Fig. 2 The top views of single transmembrane helices binding poses and probe binding pose distribution analysis respect to different targeting sites.

a-h, Models are super-positioned with the D1R chain as reference, overlayed with the probe point cloud. CD69 in CD69-S1PR1 complex (PDB: 8G9420) (a). MRAP1 in MRAP1-MC2R complex (PDB: 8GY721) (b). RAMP1 in CGRPR (PDB: 6E3Y22) (c). RAMP1 in AMY1R (PDB: 7TYF23) (d). RAMP2 in AMY2R (PDB: 7TYY23) (e). RAMP2 in AM1R (PDB: 6UUN24) (f). RAMP3 in AMY3R (PDB: 7TZF23) (g). RAMP3 in AM2R (PDB: 6UVA24) (h). i-k, Probe point clouds with different TMD targeting sites (TM1/2/4, TM3/4/5, TM5/6) as the RFDiffusion binder protocol condition, colored by normalized density. Each point cloud is roughly divided into three distinct sub-clouds: TM1/2/4, TM3/4/5 and TM5/6/7. The number near the sub-cloud is calculated as the number of related predicted models contributing to this sub-cloud. The color of a point represents the normalized density value of the grid it belongs to. Density normalization is calculated individually for each point cloud. Probe point clouds were generated with starting scaffolds targeting TM1/2/4 (i), targeting TM3/4/5 (j) and targeting TM5/6 (k).

Extended Data Fig. 3 AlphaFold3 (AF3) predicted representative GEMs in the final iteration, bound to dopamine D1 receptor.

a, Five structures predicted for each GEM, colored by pLDDT, with ipTM scores reported by AF3. The active state prediction included the Gαs sequence. b, Predicted aligned error plot reported by AF3. Red rectangle highlights the GEM-related sub-matrix.

Extended Data Fig. 4 Influence of gradient transfection of GEM on cAMP accumulation and β-arrestin 2 recruitment mediated by D1R, and the effects of GEM insertions on dopamine-induced D1R signaling.

a-h, Dopamine dose-response curves for cAMP accumulation with increasing amounts of \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\) (a), \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\) (b), \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\) (c) and \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\) (d) and for β-arrestin 2 recruitment with increasing amounts of \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\) (e), \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\) (f), \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\) (g) and \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\) (h). i-l, Dose-response curves showing the effects of various D1R constructs in which \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\) (i), \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\) (j), \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\) (k) and \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\) (l) were fused with the receptor. The signaling was dopamine-induced, measured by cAMP accumulation and β-arrestin 2 recruitment assays. Values are shown as the mean ± SEM from three independent experiments performed in triplicate. A detailed statistical evaluation is provided in Extended Data Tables 13.

Extended Data Fig. 5 Cryo-EM data processing and validation.

a-d, Results of \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)-D1R-Gs complex. a, Cryo-EM map. b, Cryo-EM map colored according to local resolution. c, Representative 2D averages. d, Fourier shell correlation (FSC) curve, the resolution was assessed by the Gold Standard of FSC = 0.143. e-h, Results of \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)-D1R-Gs complex. e, Cryo-EM map. f, Cryo-EM map colored according to local resolution. g, Representative 2D averages. h, FSC curve. i-l, Results of \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\)-D1R-BRIL complex. i, Cryo-EM map. j, Cryo-EM map colored according to local resolution. k, Representative 2D averages. l, FSC curve. m-p, Results of \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)-D1R-Gs complex. m, Cryo-EM map. n, Cryo-EM map colored according to local resolution. o, Representative 2D averages. p, FSC curve. q-t, Results of \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)-\(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)-\(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\)-D1R-BRIL complex. q, Cryo-EM map. r, Cryo-EM map colored according to local resolution. s, Representative 2D averages. t, FSC curve. u-x, Results of\(\,\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)-\(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)-\(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)-D1R-Gs complex. u, Cryo-EM map. v, Cryo-EM map colored according to local resolution. w, Representative 2D averages. x, FSC curve.

Extended Data Fig. 6 The interfaces between D1R and GEMs.

a-c, The interactions between D1R and \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\). a, The interaction surface. b, Analysis of hydrophobic and hydrophilic properties of interface residues. c, Detailed view showing residues and side chains at the \(\text{GE}{\text{M}}_{\text{anchor}}^{\text{TM}1/2/4}\)-D1R interface. d-f, The interactions between D1R and \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\). d, The interaction surface. e, Analysis of hydrophobic and hydrophilic properties of interface residues. f, Detailed view showing residues and side chains at the \(\text{GE}{\text{M}}_{\text{BAM}}^{\text{TM}3/4/5}\)-D1R interface. g-i, The interactions between D1R and \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\). g, The interaction surface. h, Analysis of hydrophobic and hydrophilic properties of interface residues. i, Detailed view showing residues and side chains at the \(\text{GE}{\text{M}}_{\text{NAM}}^{\text{TM}5/6/7}\)-D1R interface. j-l, The interactions between D1R and \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\). j, The interaction surface. k, Analysis of hydrophobic and hydrophilic properties of interface residues. l, Detailed view showing residues and side chains at the \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)-D1R interface.

Extended Data Fig. 7 rescues LoF mutations of D1R.

\({{\rm{GEM}}}_{{\rm{ago}}-{\rm{PAM}}}^{{\rm{TM5}}/6/7}\) a, Schematic illustration of the therapeutic mechanism of \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\) for LoF mutations. b, Location and types of LoF mutations in D1R. c, The effect of \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\) on cAMP accumulation in the LoF mutant D1R. The relative efficacy is defined as the range between the maximal response (1 μM dopamine or with \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\)) and the vehicle baseline (no agonist). Values are shown as the mean ± SEM from three independent experiments performed in triplicate. NSP ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two-way ANOVA followed by Sidak’s multiple comparisons test (P = 0.0683, <0.0001, <0.0001, <0.001, <0.001, <0.001, <0.001 from left to right). A detailed statistical evaluation is provided in Extended Data Table 6. Schematics in a,b were created in BioRender. Qin, J. (2025) https://BioRender.com/9l51ggt.

Extended Data Fig. 8 Rescue of LoF mutant D1R mediated by \({{\bf{GEM}}}_{{\bf{ago}}{\boldsymbol{-}}{\bf{PAM}}}^{{\bf{TM5}}{\boldsymbol{/}}{\bf{6}}{\boldsymbol{/}}{\bf{7}}}\).

a-f, Dose-response curves showing dopamine-induced cAMP accumulation in cells expressing various D1R LoF mutants rescued by \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\): D103A (a), L66F (b), D70A (c), F281R (d), N327A (e), and T37K (f). The experiments were conducted in the presence of low (light blue), medium (blue), or high (dark blue) concentrations of \(\text{GE}{\text{M}}_{\text{ago}-\text{PAM}}^{\text{TM}5/6/7}\). Wild-type D1R (D1R-WT, dashed grey line) and the mutant D1R alone (D1R-mut, yellow) are shown as controls. Values are shown as the mean ± SEM from three independent experiments performed in triplicate. A detailed statistical evaluation is provided in Extended Data Table 6.

Extended Data Table 1 Influence of gradient transfection of \({{\bf{GEM}}}_{{\bf{anchor}}}^{{\bf{TM1}}{\boldsymbol{/}}{\bf{2}}{\boldsymbol{/}}{\bf{4}}}\), \({{\bf{GEM}}}_{{\bf{BAM}}}^{{\bf{TM3}}{\boldsymbol{/}}{\bf{4}}{\boldsymbol{/}}{\bf{5}}}\), and \({{\bf{GEM}}}_{{\bf{NAM}}}^{{\bf{TM5}}{\boldsymbol{/}}{\bf{6}}{\boldsymbol{/}}{\bf{7}}}\) on cAMP accumulation and β-arrestin 2 recruitment mediated by D1R
Extended Data Table 2 Influence of gradient transfection of \({{\bf{GEM}}}_{{\bf{ago\mbox{--}PAM}}}^{{\bf{TM5}}{\boldsymbol{/}}{\bf{6}}{\boldsymbol{/}}{\bf{7}}}\) on cAMP accumulation and β-arrestin 2 recruitment mediated by D1R
Extended Data Table 3 Influence of fused-GEM on cAMP accumulation and β-arrestin 2 recruitment mediated by D1R
Extended Data Table 4 Cryo-EM data collection, model refinement and validation statistics
Extended Data Table 5 Relative efficacy of D1R mediated by \({{\bf{D1R\mbox{--}GEM}}}_{{\bf{BAM}}}^{{\bf{TM3}}{\boldsymbol{/}}{\bf{4}}{\boldsymbol{/}}{\bf{5}}}\) and \({{\bf{GEM}}}_{{\bf{ago\mbox{--}PAM}}}^{{\bf{TM5}}{\boldsymbol{/}}{\bf{6}}{\boldsymbol{/}}{\bf{7}}}\)
Extended Data Table 6 Rescue of LoF mutant D1R mediated by \({{\bf{GEM}}}_{{\bf{ago\mbox{--}PAM}}}^{{\bf{TM5}}{\boldsymbol{/}}{\bf{6}}{\boldsymbol{/}}{\bf{7}}}\)

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–11 and Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Guo, J., Zhou, Yl. et al. De novo design of GPCR exoframe modulators. Nature (2026). https://doi.org/10.1038/s41586-025-09957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09957-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing