Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide mapping of RNA-protein associations through sequencing

Abstract

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing. We apply PRIM-seq to two human cell lines and construct a human RNA-protein association network (HuRPA), encompassing >350,000 associations involving ~7,000 RNAs and ~11,000 proteins, including 2,610 proteins that each interact with at least 10 distinct RNAs. We experimentally validate the tumorigenesis-associated lincRNA LINC00339, the RNA with the highest number of protein associations in HuRPA, as a protein-associated RNA. We further validate the RNA-associating abilities of chromatin-conformation regulators SMC1A, SMC3 and RAD21, as well as the metabolic enzyme PHGDH. PRIM-seq enables systematic discovery and prioritization of RNA-binding proteins and their targets without gene- or protein-specific reagents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRIM-seq experimental pipeline.
Fig. 2: The REILIS procedure.
Fig. 3: HuRPA network.
Fig. 4: RBDs and RNA-binding motifs.
Fig. 5: PHGDH as an RNA-associating protein.

Similar content being viewed by others

Data availability

All PRIM-seq sequencing data has been deposited in GEO (GSE270010)93. All RIP-seq sequencing data have been deposited in GEO (GSE270009)94. Source data are provided with this paper.

Code availability

PRIMseqTools and its source code and complete documentation are available at GitHub95. A web interface for downloading, searching and visualizing the HuRPA network is available at https://sysbiocomp.ucsd.edu/prim/.

References

  1. Liu, S. et al. Classification and function of RNA-protein interactions. Wiley Interdiscip. Rev. RNA 11, e1601 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, F. et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yin, Y. et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 580, 147–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Thelen, M. P. & Kye, M. J. The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front. Mol. Biosci. 6, 161 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Li, W., Deng, X. & Chen, J. RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Semin. Cancer Biol. 86, 664–677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pederson, T. A layperson encounter, on the ‘modified’ RNA world. Proc. Natl Acad. Sci. USA 118, e2110706118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, L. L. Towards higher-resolution and in vivo understanding of lncRNA biogenesis and function. Nat Methods 19, 1152–1155 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. García-Mauriño, S. M. et al. RNA binding protein regulation and cross-talk in the control of AU-rich mRNA fate. Front. Mol. Biosci. 4, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sanchez de Groot, N. et al. RNA structure drives interaction with proteins. Nat. Commun. 10, 3246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Russell, R. RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Witten, J. T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinones-Valdez, G. et al. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2, 19 (2019).

    Google Scholar 

  15. Maziuk, B., Ballance, H. I. & Wolozin, B. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front. Mol. Neurosci. 10, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stanley, R. F. & Abdel-Wahab, O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat. Cancer 3, 536–546 (2022).

    CAS  Google Scholar 

  17. Enguita, F. J. et al. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response. Theranostics 12, 3946–3962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gräwe, C., Stelloo, S., van Hout, F. A. H. & Vermeulen, M. RNA-centric methods: toward the interactome of specific RNA transcripts. Trends Biotechnol. 39, 890–900 (2021).

    Article  PubMed  Google Scholar 

  20. Garcia-Moreno, M. et al. System-wide profiling of RNA-binding proteins uncovers key regulators of virus infection. Mol. Cell 74, 196–211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McHugh, C. A. & Guttman, M. RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. Methods Mol. Biol. 1649, 473–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119, 93–100 (2017).

    Article  PubMed  Google Scholar 

  25. Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell Proteomics 10, M110.007385 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramanathan, M. et al. RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsue, A. F. et al. Oligonucleotide-mediated proximity-interactome mapping (O-MAP): a unified method for RNA-targeted microenvironment-mapping in situ. Nat. Methods 21, 2058–2071 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weissinger, R., Heinold, L., Akram, S., Jansen, R. P. & Hermesh, O. RNA proximity labeling: a new detection tool for RNA-protein interactions. Molecules 26, 2270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Z. et al. Capturing RNA-protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. et al. CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol. 18, 1608–1621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gilbert, C. & Svejstrup, J. Q. RNA immunoprecipitation for determining RNA-protein associations in vivo. Curr. Protoc. Mol. Biol. Chapter 27, Unit 27.4 (2006).

    PubMed  Google Scholar 

  34. Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primers 1, 20 (2021).

    Article  CAS  Google Scholar 

  35. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods. 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nawaz, A. et al. Serine 970 of RNA helicase MOV10 is phosphorylated and controls unfolding activity and fate of mRNAs targeted for AGO2-mediated. silencing. J. Biol. Chem. 299, 104577 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hinze, F. et al. Expanding the map of protein-RNA interaction sites via cell fusion followed by PAR-CLIP. RNA Biol. 15, 359–368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gu, J. et al. GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rahman, R., Xu, W., Jin, H. & Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seo, K. W. & Kleiner, R. E. Profiling dynamic RNA-protein interactions using small-molecule-induced RNA editing. Nat. Chem. Biol. 19, 1361–1371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson, K. L. et al. Revealing protein-protein interactions at the transcriptome scale by sequencing. Mol. Cell. 81, 4091–4103.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Article  Google Scholar 

  50. Gene Ontology Consortium & Aleksander, S. A. et al. The Gene Ontology knowledgebase in 2023. Genetics. 224, iyad031 (2023).

    Article  Google Scholar 

  51. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Cook, K. B., Kazan, H., Zuberi, K., Morris, Q. & Hughes, T. R. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 39, D301–D308 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database 2016, baw035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ghosh P., Murugavel P. & Sowdhamini R. hRBPome: a central repository of all known human RNA-binding proteins. Preprint at bioRxiv http://biorxiv.org/lookup/doi/10.1101/269043 (2018).

  56. Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Mullari, M., Lyon, D., Jensen, L. J. & Nielsen, M. L. Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J. Proteome Res. 16, 2762–2772 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell. 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang, J. et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 50, D326–D332 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Masuda, A. et al. CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci. Rep. 2, 209 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oberstrass, F. C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science. 309, 2054–2057 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Barabási, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).

    Article  PubMed  Google Scholar 

  64. Van Nostrand, E. L. et al. Author correction: a large-scale binding and functional map of human RNA-binding proteins. Nature 589, E5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ye, H. et al. The SP1-induced long noncoding RNA, LINC00339, promotes tumorigenesis in colorectal cancer via the miR-378a-3p/MED19 axis. Onco. Targets Ther. 13, 11711–11724 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuan, Y., Haiying, G., Zhuo, L., Ying, L. & Xin, H. Long non-coding RNA LINC00339 facilitates the tumorigenesis of non-small cell lung cancer by sponging miR-145 through targeting FOXM1. Biomed. Pharmacother. 105, 707–713 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 54, 1.30.1–1.30.33 (2016).

    PubMed  Google Scholar 

  68. Zhang, W., Xie, M., Shu, M. D., Steitz, J. A. & DiMaio, D. A proximity-dependent assay for specific RNA-protein interactions in intact cells. RNA 22, 1785–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kattah, N. H., Kattah, M. G. & Utz, P. J. The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunol. Rev. 233, 126–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, X. et al. PHGDH expression increases with progression of Alzheimer’s disease pathology and symptoms. Cell Metab. 34, 651–653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Tran, S., Fairlie, W. D. & Lee, E. F. BECLIN1: protein structure, function and regulation. Cells 10, 1522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wortel, I. M. N., van der Meer, L. T., Kilberg, M. S. & van Leeuwen, F. N. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 28, 794–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Danzi, M. C. et al. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol Cell Neurosci. 92, 114–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, H., Yu, H., Zhou, H., Zhu, W. & Wang, X. Elevated nuclear PHGDH synergistically functions with cMyc to reshape the immune microenvironment of liver cancer. Adv Sci. 10, e2205818 (2023).

    Article  Google Scholar 

  77. Calandrelli, R. et al. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat Commun. 14, 6519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Soloviev, Z. et al. Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2. Biochim Biophys Acta Proteins Proteom. 1870, 140759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xiao, R. et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dethoff, E. A. & Weeks, K. M. Effects of refolding on large-scale RNA structure. Biochemistry 58, 3069–3077 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article  Google Scholar 

  83. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  85. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 3, 361–362 (2009).

    Article  Google Scholar 

  89. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2013).

    Article  PubMed  Google Scholar 

  93. Zhijie Q., Shuanghong, X. & Kara J. Genome-wide mapping of RNA-protein associations via sequencing. Datasets. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE270010 (2025).

  94. Chen, J., Zhao, W., Qi, Z. & Wen, X. Identification of PHGDH protein-assocaited RNAs and their overlap with PRIM-seq derived RNAs through RIP-seq. Datasets. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE270009 (2025).

  95. Qi, Z. PRIMseqTools. Source code. GitHub https://github.com/Zhong-Lab-UCSD/PRIMseqTools.git (2025).

Download references

Acknowledgements

We thank UCSD IGM Genomics Center for support with sequencing. This work is supported by National Institutes of Health grants R01GM138852 (S.Z.), DP1DK126138 (S.Z.), UH3CA256960 (S.Z.) and R01HD107206 (S.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Z.Q., S.X., K.J. and S.Z. designed the PRIM-seq technology. S.X. and K.J. generated the PRIM-seq libraries. Z.Q., X.W. and P.L. carried out the data analysis. S.X. carried out the RNA-PLA experiments. J.C. and W.Z. carried out RIP-seq and PHGDH perturbation experiments. Z.Q., S.X. and S.Z. took the lead in writing the manuscript. Z.Q., S.X., J.C., W.Z., P.L., J.L.C.R. and S.Z. contributed to the interpretation of the results, provided critical feedback and helped to shape the research, analysis and manuscript. J.C, W.Z. and K.J. contributed equally to this paper.

Corresponding author

Correspondence to Sheng Zhong.

Ethics declarations

Competing interests

S.Z. is a founder and shareholder of Genemo and Neurospan. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks David Tollervey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 PRIM-seq’s experimental modules.

(a) SMART-display. (b-i) REILIS (Reverse transcription, Incubation, Ligation, and Sequencing).

Extended Data Fig. 2 PRIM-seq data processing.

(a) A cartoon showing the decoding of the protein-end and the RNA-end reads. As the sequencing reads from both ends are always from 5′ to 3′, the protein-end reads are always antisense sequences and the RNA-end reads are alway sense strand sequences. (b) The contingency table for testing the independence of a RNA (RNA A) and a protein (Protein B) from PRIM-seq data. Xij are the read counts. A Chi-square test is constructed from this contingency table for each pair of RNA and protein. (c) Flowchart of PRIMseqTools for processing PRIM-seq data. Adaptor sequences were trimmed (Adaptor trimming) and low-quality reads were removed (Quality filtering). The resulting read pairs were mapped to Refseq genes (Mapping). The read pairs with the two ends mapped to two different genes are retained (Identification of chimeric read pairs) and deduplicated. Non-duplicated chimeric read pairs with one end mapped to the sense strand of a gene and the other end mapped to the antisense strand of a protein-coding gene (RNA/protein end assignment) were used as the input for the Chi-square test (Statistical test).

Extended Data Fig. 3 Comparison of PRIM-seq and eCLIP data.

(a) Binding profiles of RPS3, FUS, SRSF1, and TAF15 on the TARDBP RNA comparing PRIM-seq (red tracks), eCLIP (green tracks), and eCLIP peaks called with Size‐matched Input (SMInput) controls (green bars beneath eCLIP tracks). Five binding sites shared by all four RBPs are consistently detected in both methods. Arrows mark notable site-specific differences: (1) a site bound by RPS3, FUS, and SRSF1 (but not TAF15); (2) a site bound by RPS3, FUS, and TAF15 (but not SRSF1); and (3) a site bound exclusively by FUS. Conversely, eCLIP identified a binding site for RPS3 not detected by PRIM-seq (Arrow 4). (b) Similar analysis on SNRPD3 RNA, where both PRIM-seq (red) and eCLIP (green) consistently identify multiple shared binding sites.

Extended Data Fig. 4 Gene Ontology analysis.

(a, d, f) The number of genes (x axis) in each GO term (dot) is plotted against the significance level (y axis) of this term in the HuRPA proteins. To avoid very general GO terms, we restricted our analysis to Biological Process (BP) terms with no more than 1,000 genes per term (a), and Cellular Component (CC) and Molecular Function (MF) terms with no more than 100 genes per term (d, f). Additionally, we annotated the most notable BP, CC, and MF terms with no more than 1,100, 110, and 110 genes, respectively (a, d, f). (b, e, g) The numbers of RNA-protein associations (RPAs), RNAs, and proteins in the HuRPA subnetworks associated with the most notable GO terms: ‘RNA processing’ (b), ‘cytoplasmic stress granule’ (e), and ‘translation factor activity, RNA binding’ (g). (c) Distribution of ‘RNA processing’ associated HuRPA proteins across different protein classes.

Extended Data Fig. 5 PTBP1-Associated RNAs.

(a) Distribution of PTBP1 target RNAs identified by PRIM-seq, highlighting the subset that overlaps with entries in the RNAInter database (pink) versus novel targets (green). (b) Motif frequency (y-axis) and statistical enrichment (x-axis, –log[p-value]) for each of the two de novo motifs uncovered by PRIM-seq. (c, d) An example depicting the ‘CUCUCUCUGG’ motif (red block) within a PRIM-seq peak (pink track). (e) Alignment of the top de novo motif (top) with the known PTBP1 motif (bottom), underscoring their strong similarity.

Extended Data Fig. 6 RNA-PLA analysis of RNA-protein pairs involving LINC00339 noncoding RNA.

(a–c) Representative images of the tests (protein name + LINC00039) (a), antibody-only controls (protein name + none) (b), other negative controls including no-probe-no-antibody control (none + none), RNA probe-only control (none + LINC00339), and four RNA-protein pairs not included in HuRPA (GFP + LINC0039, CD40 + LINC0039, CD32 + LINC0039, LTBR + LINC0039 (c). Quantification is provided in Fig. 3k. Blue: DAPI staining. Red: RNA-PLA signal. Scale bar = 20 μm. (d) ROC curve plotting the true positive rate (TPR, y-axis) against the false positive rate (FPR, x-axis), using HuRPA as the reference dataset and RNA-PLA as the test dataset, while varying the threshold applied to RNA-PLA signals.

Extended Data Fig. 7 Comparison between RNA Immunoprecipitation Sequencing (RIP-seq) and PRIM-seq data.

(a) Confusion matrix of all human RNA genes categorized according to their identification as SMC1A targets by PRIM-seq (rows) and RIP-seq (columns). (b) Chi-square test results derived from the confusion matrix in (a). (c–f) ROC curves evaluating PRIM-seq data against RIP-seq results for SMC1A, SMC3, RAD21, and HDAC2. RIP-seq-identified targets serve as the reference sets, and varying thresholds on PRIM-seq read counts are applied to define PRIM-seq-identified targets. (g–j) Expanded views of the ROC curves in (c–f), highlighting lower values on the x-axis. (k) Confusion matrix based solely on PRIM-seq reads within the HuRPA network, categorizing reads according to whether the protein-end maps to SMC1A (rows) and whether the RNA-end corresponds to SMC1A RIP-seq–identified target RNAs (columns). (l) Chi-square test results from the confusion matrix shown in (k). (m) Chi-square test results from a restricted version of the confusion matrix in (k), using only PRIM-seq reads involving SMC1A, SMC3, RAD21, and HDAC2 and their respective RIP-seq–identified target RNAs.

Extended Data Fig. 8 RIP-seq and RNA-PLA analysis of PHGDH.

(a) Categorization of PHGDH-associated RNAs in HuRPA by RNA classes. (b) The average RPM (reads per million, y axis) of each RNA gene (dot) in PHGDH RIP-seq vs. the enrichment level (-log10(adjusted p-value), x axis) of PHGDH as compared to IgG. Purple and red dots: RIP-seq identified PHGDH-associated RNAs. Red dots: PHGDH-associated RNAs identified by both RIP-seq and HuRPA. (c) Comparison of PHGDH-associated RNAs in HuRPA and detected by RIP-seq. Odds ratio (y axis) is greater than 1, indicating a strong overlap. Error bar: 95% confidence interval. As the threshold for calling PHGDH-associated RNAs from RIP-seq (x axis) increases, the odds ratio also increases, indicating a stronger overlap. (d) Among the PHGDH-associated RNAs in HuRPA, the RNA-end reads (y axis) of the RNAs detected (blue) by PHGDH RIP-seq are more than the RNAs not detected by PHGDH RIP-seq (orange). (e–h) Representative RNA-PLA images of the PHGDH protein and ATF4 mRNA (e), RNA-probe-only control (f), antibody-only control (g), and no-antibody-no-RNA-probe control (h). Scale bar = 20 μm.

Extended Data Fig. 9 Cellular responses to PHGDH knockdown in HEK293T cells.

Immunofluorescence staining and quantification of autophagosome (a, b), BrdU (c, d), and activated Caspase-3 (aCaspase3) (e,f) in scramble siRNA (Control) and PHGDH-targeting siRNAs (si-1, si-2) treated HEK293T cells. P-values are derived from two-sided t-tests. Error bar: SEM. n: number of replicates. Scale bars = 100 μm.

Extended Data Fig. 10 Cellular responses to PHGDH knockdown in mouse neural stem cells (mNSCs).

P-values are derived from two-sided t-tests. Error bar: SEM. n: number of replicates. Scale bars = 20 μm. (a) PHGDH RNA levels in scramble siRNA (Control) and PHGDH-targeting siRNAs (si-1, si-2) treated mNSCs. (b–g) Immunofluorescence staining and quantification of autophagosome (b, c), BrdU (d, e), and activated Caspase-3 (aCaspase3) (f, g) in scramble siRNA (Control) and PHGDH-targeting siRNAs (si-1, si-2) treated mNSCs. (h–j) Cell morphology analysis. Immunofluorescence staining of Nestin (h), normalized average dendrite length (i), and the number of dendrite intersections (y axis) as a function of distance from the soma (x axis) (j) in scramble siRNA (Control) and PHGDH-targeting siRNAs (si-1, si-2) treated mNSCs. Scale bars = 100 μm.

Supplementary information

Supplementary Information

The Supplementary Information file contains Supplementary Figs. 1–9 and Tables 1–7.

Reporting Summary

Source data

Source Data Fig. 5

The Source Data file contains all the uncropped blots for the main Fig. 5f,j,l,n,r,t.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Xue, S., Chen, J. et al. Genome-wide mapping of RNA-protein associations through sequencing. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41587-025-02780-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research