Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering bacterial pseudaminylation with pan-specific antibody tools

Abstract

Pseudaminic acids (Pse) are a family of carbohydrates found within bacterial lipopolysaccharides, capsular polysaccharides and glycoproteins that are critical for the virulence of human pathogens. However, a dearth of effective tools for detecting and enriching Pse has restricted study to only the most abundant Pse-containing glycoconjugates. Here we devise a synthesis of α- and β-O-pseudaminylated glycopeptides to generate ‘pan-specific’ monoclonal antibodies (mAbs) that recognize α- and β-configured Pse with diverse N7 acyl groups, as well as its C8 epimer (8ePse), presented within glycans or directly linked to polypeptide backbones. Structural characterization reveals the molecular basis of Pse recognition across a range of diverse chemical contexts. Using these mAbs, we establish a glycoproteomic workflow to map the Pse glycome of Helicobacter pylori, Campylobacter jejuni and Acinetobacter baumannii strains. Finally, we demonstrate that the mAbs recognize diverse capsule types in multidrug-resistant Acinetobacter baumannii and enhance phagocytosis to eliminate infections in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of Pse-containing glycopeptides.
Fig. 2: Generation of Pse-specific mAbs.
Fig. 3: Structural insights into the recognition of Pse5Ac7Ac by mAb 1E8.
Fig. 4: Enrichment of Pse-modified proteins in H. pylori and C. jejuni.
Fig. 5: Detection and enrichment of Pse-containing glycopeptides from A. baumannii strains.
Fig. 6: Pse antibodies as tools for detecting and treating A. baumannii infections.

Data availability

Structure coordinates have been deposited in the Protein Data Bank (https://www.rcsb.org/) under accession code 9PQS. All mass spectrometry data (RAW files, FragPipe outputs, Rmarkdown scripts and input tables) have been deposited into the PRIDE ProteomeXchange repository with the following data identifiers: PXD056875 for proteomic studies of H. pylori flagellin; PXD046836 for H. pylori P12 enrichments; PXD048493 for H. pylori 26695 enrichments; PXD046858 for C. jejuni NCTC 11168 enrichments; PXD046859 for A. baumannii BAL062 enrichments; and PXD053904 for A. baumannii A74 enrichments. Source data are provided with this paper.

References

  1. Varki, A., Schnaar, R. L. & Schauer, R. in Essentials of Glycobiology [Internet] 3rd edn (eds Varki, A. et al.) Ch. 15 (Cold Spring Harbor Laboratory Press, 2017).

  2. McDonald, N. D. & Boyd, E. F. Structural and biosynthetic diversity of nonulosonic acids (NulOs) that decorate surface structures in bacteria. Trends Microbiol. 29, 142–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Logan, S. M., Kelly, J. F., Thibault, P., Ewing, C. P. & Guerry, P. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46, 587–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, A. L. et al. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc. Natl Acad. Sci. USA 106, 13552–13557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Jong, H., Wösten, M. M. & Wennekes, T. Sweet impersonators: molecular mimicry of host glycans by bacteria. Glycobiology 32, 11–22 (2022).

    Article  PubMed  Google Scholar 

  6. Stephenson, H. N. et al. Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin–host interaction. J. Infect. Dis. 210, 1487–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, I.-M., Wu, H.-Y., Angata, T. & Wu, S.-H. Bacterial pseudaminic acid binding to Siglec-10 induces a macrophage interleukin-10 response and suppresses phagocytosis. Chem. Commun. 60, 2930–2933 (2024).

    Article  CAS  Google Scholar 

  8. Knirel, Y. A., Shashkov, A. S., Tsvetkov, Y. E., Jansson, P. E. & Zahringer, U. 5,7-Diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry. Adv. Carbohydr. Chem. Biochem. 58, 371–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kiss, E. et al. The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure. Mol. Plant Microbe Interact. 14, 1395–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Senchenkova, S. N. et al. Structure of a new pseudaminic acid-containing capsular polysaccharide of Acinetobacter baumannii LUH5550 having the KL42 capsule biosynthesis locus. Carbohydr. Res. 407, 154–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Knirel, Y. A. et al. Sialic acids of a new type from the lipopolysaccharides of Pseudomonas aeruginosa and Shigella boydii. Carbohydr. Res. 133, C5–C8 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Knirel, Y. A. et al. Somatic antigens of Pseudomonas aeruginosa—the structure of O-specific polysaccharide chains of the lipopolysaccharides from Pseudomonas aeruginosa o5 (Lányi) and immunotype-6 (Fisher). Eur. J. Biochem. 163, 639–652 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Schirm, M. et al. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48, 1579–1592 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Posch, G. et al. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J. Biol. Chem. 286, 38714–38724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horzempa, J., Dean, C. R., Goldberg, J. B. & Castric, P. Pseudomonas aeroginosa 1244 pilin glycosylation: glycan substrate recognition. J. Bacteriol. 188, 4244–4252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNally, D. J. et al. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J. Biol. Chem. 281, 18489–18498 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Champasa, K., Longwell, S. A., Eldridge, A. M., Stemmler, E. A. & Dube, D. H. Targeted identification of glycosylated proteins in the gastric pathogen Helicobacter pylori (Hp). Mol. Cell. Proteomics 12, 2568–2586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopf, P. S. et al. Protein glycosylation in Helicobacter pylori: beyond the flagellins?. PLoS ONE 6, e25722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahdavi, J. et al. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol. 4, 130202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andolina, G. et al. Metabolic labeling of pseudaminic acid-containing glycans on bacterial surfaces. ACS Chem. Biol. 13, 3030–3037 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, R. et al. Synthetic pseudaminic-acid-based antibacterial vaccine confers effective protection against Acinetobacter baumannii infection. ACS Cent. Sci. 7, 1535–1542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, I.-M. et al. Pseudaminic acid on exopolysaccharide of Acinetobacter baumannii plays a critical role in phage-assisted preparation of glycoconjugate vaccine with high antigenicity. J. Am. Chem. Soc. 140, 8639–8643 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, I.-M., Tu, I.-F., Yang, F.-L. & Wu, S.-H. Bacteriophage tail-spike proteins enable detection of pseudaminic-acid-coated pathogenic bacteria and guide the development of antiglycan antibodies with cross-species antibacterial activity. J. Am. Chem. Soc. 142, 19446–19450 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, R., Liu, H., Tang, A. H., Payne, R. J. & Li, X. A solution to chemical pseudaminylation via a bimodal glycosyl donor for highly stereocontrolled α- and β-glycosylation. Org. Lett. 21, 3584–3588 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Enhanced epimerization of glycosylated amino acids during solid-phase peptide synthesis. J. Am. Chem. Soc. 134, 6316–6325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoenhofen, I. C., McNally, D. J., Brisson, J. R. & Logan, S. M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16, 8C–14C (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, K. Y. et al. Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 26, e12787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castric, P., Cassels, F. J. & Carlson, R. W. Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276, 26479–26485 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Kenyon, J. J. & Hall, R. M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE 8, e62160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lees-Miller, R. G. et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol. 89, 816–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Iwashkiw, J. A. et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8, e1002758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nigro, S. J., Post, V. & Hall, R. M. Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J. Antimicrob. Chemother. 66, 1504–1509 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kenyon, J. J., Marzaioli, A. M., Hall, R. M. & De Castro, C. Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii. Glycobiology 24, 554–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Tkalec, K. I. et al. Glycan-tailored glycoproteomic analysis reveals serine is the sole residue subjected to O-linked glycosylation in Acinetobacter baumannii. J. Proteome Res. 23, 2474–2494 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Shashkov, A. S. et al. Characterization of the carbapenem-resistant Acinetobacter baumannii clinical reference isolate BAL062 (CC2:KL58:OCL1): resistance properties and capsular polysaccharide structure. mSystems 9, e0094124 (2024).

    Article  PubMed  Google Scholar 

  37. Baker, S. et al. Exploiting human immune repertoire transgenic mice for protective monoclonal antibodies against antimicrobial resistant Acinetobacter baumannii. Nat. Commun. 15, 7979 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, X. et al. Discovery of a monoclonal antibody that targets cell-surface pseudaminic acid of Acinetobacter baumannii with direct bactericidal effect. ACS Cent. Sci. 10, 439–446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nielsen, T. B. et al. Monoclonal antibody therapy against Acinetobacter baumannii. Infect. Immun. 89, e0016221 (2021).

    Article  PubMed  Google Scholar 

  40. Kenyon, J. J., Marzaioli, A. M., Hall, R. M. & De Castro, C. Structure of the K6 capsular polysaccharide from Acinetobacter baumannii isolate RBH4. Carbohydr. Res. 409, 30–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kenyon, J. J. et al. The K46 and K5 capsular polysaccharides produced by Acinetobacter baumannii NIPH 329 and SDF have related structures and the side-chain non-ulosonic acids are 4-O-acetylated by phage-encoded O-acetyltransferases. PLoS ONE 14, e0218461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nigro, S. J. & Hall, R. M. Loss and gain of aminoglycoside resistance in global clone 2 Acinetobacter baumannii in Australia via modification of genomic resistance islands and acquisition of plasmids. J. Antimicrob. Chemother. 71, 2432–2440 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen, T. B. et al. Monoclonal antibody requires immunomodulation for efficacy against Acinetobacter baumannii infection. J. Infect. Dis. 224, 2133–2147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Russo, T. A. et al. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect. Immun. 81, 915–922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kappler, K. & Hennet, T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 21, 224–239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmitt, W. & Haas, R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12, 307–319 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Covacci, A. et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA 90, 5791–5795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Korlath, J. A., Osterholm, M. T., Judy, L. A., Forfang, J. C. & Robinson, R. A. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J. Infect. Dis. 152, 592–596 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Bouvet, P. J. M. & Grimont, P. A. D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Evol. Microbiol. 36, 228–240 (1986).

    CAS  Google Scholar 

  52. Nemec, A., Janda, L., Melter, O. & Dijkshoorn, L. Genotypic and phenotypic similarity of multiresistant Acinetobacter baumannii isolates in the Czech Republic. J. Med. Microbiol. 48, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Nhu, N. T. K. et al. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J. Med. Microbiol. 63, 1386–1394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shashkov, A. S. et al. Revised structure of the capsular polysaccharide of Acinetobacter baumannii LUH5533 (serogroup O1) containing di-N-acetyllegionaminic acid. Russ. Chem. Bull. 64, 1196–1199 (2015).

    Article  CAS  Google Scholar 

  55. Arbatsky, N. P. et al. Revised structure of the polysaccharide from Acinetobacter baumannii LUH5551 assigned as the K63 type capsular polysaccharide. Carbohydr. Res. 535, 109020 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Kenyon, J. J., Marzaioli, A. M., Hall, R. M. & De Castro, C. Structure of the K12 capsule containing 5,7-di-N-acetylacinetaminic acid from Acinetobacter baumannii isolate D36. Glycobiology 25, 881–887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kenyon, J. J. et al. Acinetobacter baumannii K13 and K73 capsular polysaccharides differ only in K-unit side branches of novel non-2-ulosonic acids: di-N-acetylated forms of either acinetaminic acid or 8-epiacinetaminic acid. Carbohydr. Res. 452, 149–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Iovine, A. et al. Structure of the K58 capsular polysaccharide produced by Acinetobacter baumannii isolate MRSN 31468 includes Pse5Ac7Ac that is 4-O-acetylated by a phage-encoded acetyltransferase. Carbohydr. Res. 547, 109324 (2025).

    Article  CAS  PubMed  Google Scholar 

  59. Kabsch, W. X.D.S. Acta Crystallogr. Sect. D 66, 125–132 (2010).

  60. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. Sect. D 60, 432–438 (2004).

    Article  Google Scholar 

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  62. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  63. Talyansky, Y. et al. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog. 17, e1009291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.D.G.-B. acknowledges support from The Walter and Eliza Hall Institute of Medical Research; a Victorian State Government Operational Infrastructure support grant; Rebecca Cooper Fellowship; and National Health and Medical Research Council (NHMRC) Ideas Grants (GNT2027601 and GNT2000517) and Investigator Grant (GNT 2033340). N.E.S. was supported by an Australian Research Council (ARC) Future Fellowship (FT200100270), an ARC Discovery Project Grant (DP210100362) and NHMRC Ideas Grant (GNT2018980). R.J.P. acknowledges funding from an NHMRC Investigator Grant (GNT1174941) and the Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science (CE200100012). D.H.D. acknowledges funding from the National Institutes of Health (NIH) Award R15 (GM109397). We thank the Melbourne Mass Spectrometry and Proteomics Facility of The Bio21 Molecular Science and Biotechnology Institute for access to mass spectrometry instrumentation. We also thank R. Haas for the generous gift of the H. pylori P12 strain.

Author information

Authors and Affiliations

Authors

Contributions

A.H.T., L.C., C.E.C.-S., C.L., R.W. and X.L. planned and performed all chemical syntheses; A.W.D. and K.A.S. cultured H. pylori P12 samples; M.K.-L. and L.Z. cultured H. pylori 26695 samples; M.C. and M.L. performed proteomic analyses of H. pylori P12 flagellin; N.M.S. and C.G. raised/characterized mAbs, collected and analyzed all SPR/BLI data, and performed all protein expression and structural biology; A.P.A., K.D.M. and D.H.D. made H. pylori Pse-knockout strains; N.L.S., R.M.H. and J.J.K. sourced A. baumannii strains with diverse K types; L.M.W., C.M. and F.L.S. performed all fluorescence-activated cell sorting experiments; A.L.D. and S.J.C. cultured C. jejuni strains and purified flagellin from these samples; K.I.K. and N.E.S. cultured A. baumannii strains and performed in vitro infection assays; K.I.K., N.M.S. and N.E.S. performed glycopeptide enrichments and glycoproteomic analyses; L.L., G.P.C. and B.P.H. performed in vivo infection assays; N.E.S., E.D.G.-B. and R.J.P. conceived and coordinated the project, and cowrote the paper.

Corresponding authors

Correspondence to Nichollas E. Scott, Ethan D. Goddard-Borger or Richard J. Payne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Micha Fridman, Martin Pabst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ExD enabled localisation of native H. pylori glycopeptides FlaA (206-211), FlaB (242-260) and FlgE(281-291).

Localised pseudaminylated events within tryptic digests of flagellin preparation of H. pylori P12 for (A) FlaA 206VSSSAGTGIGVLAEVINK211, (B) FlaB 242ASYNVMATGGTPVQSGTVR260 and (C) FlgE 281ISFTNDSAVSR291. For the FlgE glycopeptide 281ISFTNDSAVSR291 PRM EAD analysis was undertaken to allow localisation of glycosylation events while EThcD was undertaken on 206VSSSAGTGIGVLAEVINK211 and 242ASYNVMATGGTPVQSGTVR260.

Extended Data Fig. 2 Butterfly plots of synthetic verses native glycopeptide 281ISFTNDSAVSR291 of FlgE.

Butterfly plots comparing HCD fragmentation of synthetic glycopeptides bearing an (A) α- or (B) β-configured Pse residue with the identical authentic glycopeptides derived from tryptic digests of flagellin preparation of H. pylori P12. Spectral angle (SA) analysis comparing matched b- and y-ion intensities to native 281ISFTNDSAVSR291 of FlgE supports highest similarity to α-pseudaminylation compared to β-pseudaminylation.

Extended Data Fig. 3 ELISA screening of potential Pse-specific hybridoma supernatant.

(A) ELISA screen of hybridoma supernatant (1:1000) against: (i) control peptides 8, 9 and 10 conjugated to BSA (green), (ii) Pse peptides α-8, α-9 and α-10 conjugated to BSA (orange), and flagellin purified from C. jejuni 81-176, which is also pseudaminylated with Pse5Ac7Ac (blue). Data are presented as mean values ± SD for n = 2. (B) ELISA screen of hybridoma supernatants (1:2000) that are Pse-specific against: (i) α-configured Pse peptides α-8, α-9 and α-10 conjugated to BSA (orange) and (ii) β-configured Pse peptides β-8, β-9 and β-10 conjugated to BSA (blue). Data are presented as mean values ± SD for n = 2.

Extended Data Fig. 4 Binding affinity of Pse analogues to the 1E8 antibody.

SPR sensorgrams and fitted steady-state response data for Pse analogues binding to biotinylated 1E8 Fab’ immobilised on a streptavidin-coated chip.

Extended Data Fig. 5 Pse glycopeptide enrichment from H. pylori 26695.

(A) Volcano plot illustrating the enrichment of Pse5Ac7Ac-modified glycopeptides from H. pylori 26695. (B) EThcD / HCD spectra of the novel glycopeptides derived from Pgi, FlgE and HP_0564.

Source data

Extended Data Fig. 6 Pseudaminylation of C. jejuni glycoproteins.

MS/MS EThcD and HCD spectra of (A-B) 447KPSVFSNIWHK457 from FtsA (Q0PAI4_CAMJE) with pseudaminylation localised to Ser452; (C-D) 19KDATTATDAVISTITDVLAK38 from Hup (Q46121_CAMJE) with pseudaminylation localised to Ser30 and (E-F) 191GNDPHDSLVGIK202 from Maf3 (Q0P8S4_CAMJE) with pseudaminylation inferred to Ser197 by the absence of other hydroxyl containing amino acids.

Extended Data Fig. 7 Novel pseudaminic acid-containing glycopeptides identified in A. baumannii A74.

MS/MS EThcD and HCD spectra of unique the glycopeptides identified within A. baumannii A74 corresponding to (A-B) 374APAVANHASSVETK387 of the multidrug efflux RND transporter periplasmic adaptor subunit AdeA (MDW5585830.1); (C-D) 153DAASEALHQITSGGGVTR170 of the CvpA family protein (MDW5584485.1) and (E-F) 55VQQLMDEANATADNPNALASITASADK81 of the tetratricopeptide repeat protein (MDW5583480.1).

Extended Data Fig. 8 Pse-specific surface binding of mAb 1E8 to A. baumannii.

(A) Flow cytometry analysis of A. baumannii strains ATCC19606 (K3 CPS lacking Pse) and A74 (K2 CPS with Pse) either unstained or stained with α-Pse mAb 1E8 alone, α-mouse-AlexaFluor647 alone, or both α-Pse mAb 1E8 and α-mouse-AlexaFluor647. Staining of A. baumannii with α-Pse mAb followed by α-mouse-AlexaFluor647 results in a shift in A647 intensity for A. baumannii A74, while no shift is observed for ATCC 19606. (B) Western blot analysis of lysates from A. baumannii strains to assess: (i) legionaminic acid reactivity using LUH5533 (K7), SDF (K5), LUH5551 (K63), NIPH-329 (K46), A74 (K2), and ATCC 19606 (K3); (ii) acinetaminic acid reactivity using D36 (K12), UMB001 (K13), SGH0703 (K73), A74 (K2), and ATCC 19606 (K3) and (iii) additional pseudaminic acid reactivity using AUSMDU00058681 (K90) and MRSN31468 (K58). The A74 (K2 CPS with Pse) and ATCC 19606 (K3 CPS lacking Pse) serve as positive and negative controls, respectively. (C) SNFG diagrams of the various A. baumannii CPS K-type monomers used to generate this figure.

Source data

Extended Data Fig. 9 Immunofluorescence imaging-based opsonization assays of A. baumannii A74.

(A) Density plots of biological replicates assessing the intracellular number of A. baumannii A74 in THP-1 macrophages treated in the absence of added antibody, or in the presence of Pse 1E8 or a mouse IgG1 isotype control with >200 cell assessed for each biological replicate. (B) Violin plots depicting the abundance of intracellular bacteria in THP-1 macrophages treated with A. baumannii A74 in the absence of added antibody, or in the presence of Pse 1E8 or a mouse IgG1 isotype control. Statistical analysis corresponding to pairwise two-sided student t-tests with p-values less then 0.001 denoted by *** and corresponding to p-values = 2.88×10−36 and 9.32×10−29. Statistical analysis was undertaken on the combined data from four biological replicates corresponding to n > 900 cells per group. The boxplot denotes the upper (Q3) and lower (Q1) quartiles of the observed data ranges, with the median denoted between these ranges. The whiskers denote 1.5 times the interquartile Range of Q1 and Q3, excluding outliers. (C) A representative immunofluorescence microscopy micrograph of THP-1 cells one hour after infection with A. baumannii A74. DNA has been stained with Hoechst 33342 (blue), actin with SiR-Actin (red), and Pse mAb 1E8 (green). Scale bar is 5 μm.

Source data

Extended Data Fig. 10 Surface-specific binding and opsonophagocytosis of H. pylori.

(A) In vitro gentamicin protection assays of H. pylori strains in response to pretreatment with 1E8 Pse-specific antibody, isotype control, or PBS (n = 3 independent experiments for each condition). Box and whisker plots indicate minimum, first quartile, median, third quartile, and maximum values. Kruskal–Wallis tests gave p-values < 0.05 (*) and <0.01 (**). (B) Flow cytometry analysis of H. pylori strains either unstained or stained with α-Pse mAb alone, α-mouse-AlexaFluor647 alone, or both α-Pse mAb 1E8 and α-mouse-AlexaFluor647.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–86, Tables 1–3, Data 1–6 captions and Note.

Reporting Summary

Supplementary Data 1

Glycoproteomic data for H. pylori P12 flagellin preparation.

Supplementary Data 2

Enriched H. pylori P12 glycopeptides.

Supplementary Data 3

Glycoproteomic data for H. pylori 26695.

Supplementary Data 4

Enriched C. jejuni glycopeptides.

Supplementary Data 5

Glycoproteomic data for A. baumannii A74.

Supplementary Data 6

Glycoproteomic data for A. baumannii BAL062.

Source data

Source Data Figs. 2 and 4–6 and Extended Data Figs. 5 and 8–10

Unprocessed western blots and gels, volcano plot source data, open search plot source data, SPR source data, BLI source data, ELISA plot source data, box-and-whisker plot source data, Kaplan–Meier curve and CFU source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A.H., Soler, N.M., Karlic, K.I. et al. Uncovering bacterial pseudaminylation with pan-specific antibody tools. Nat Chem Biol (2026). https://doi.org/10.1038/s41589-025-02114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41589-025-02114-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology